scholarly journals Genetic variability of spelt factor gene in Triticum and Aegilops species

2020 ◽  
Vol 20 (S1) ◽  
Author(s):  
Valeriya Vavilova ◽  
Irina Konopatskaia ◽  
Alexandr Blinov ◽  
Elena Ya. Kondratenko ◽  
Yuliya V. Kruchinina ◽  
...  

Abstract Background Threshability, rachis fragility and spike shape are critical traits for the domestication and evolution of wheat, determining the crop yield and efficiency of the harvest. Spelt factor gene Q controls a wide range of domestication-related traits in polyploid wheats, including those mentioned above. The main goal of the present study was to characterise the Q gene for uninvestigated accessions of wheats, including four endemics, and Aegilops accessions, and to analyze the species evolution based on differences in Q gene sequences. Results We have studied the spike morphology for 15 accessions of wheat species, including four endemics, namely Triticum macha, T. tibetanum, T. aestivum ssp. petropavlovskyi and T. spelta ssp. yunnanense, and 24 Aegilops accessions, which are donors of B and D genomes for polyploid wheat. The Q-5A, q-5D and q-5S genes were investigated, and a novel allele of the Q-5A gene was found in accessions of T. tibetanum (KU510 and KU515). This allele was similar to the Q allele of T. aestivum cv. Chinese Spring but had an insertion 161 bp in length within exon 5. This insertion led to a frameshift and premature stop codon formation. Thus, the T. tibetanum have spelt spikes, which is probably determined by the gene Tg, rather than Q. We determined the variability within the q-5D genes among hexaploid wheat and their D genome donor Aegilops tauschii. Moreover, we studied the accessions C21–5129, KU-2074, and K-1100 of Ae. tauschii ssp. strangulata, which could be involved in the origin of hexaploid wheats. Conclusions The variability and phylogenetic relationships of the Q gene sequences studied allowed us to clarify the relationships between species of the genus Triticum and to predict the donor of the D genome among the Ae. tauschii accessions. Ae. tauschii ssp. strangulata accessions C21–5129, KU-2074 and K-1100 are the most interesting among the analysed accessions, since their partial sequence of q-5D is identical to the q-5D of T. aestivum cv. Chinese Spring. This result indicates that the donor is Ae. tauschii ssp. strangulata but not Ae. tauschii ssp. tauschii. Our analysis allowed us to clarify the phylogenetic relationships in the genus Triticum.

2008 ◽  
Vol 88 (6) ◽  
pp. 1065-1071 ◽  
Author(s):  
Qijiao Chen ◽  
Lianquan Zhang ◽  
Zhongwei Yuan ◽  
Zehong Yan ◽  
Youliang Zheng ◽  
...  

Due to the high polymorphisms between synthetic hexaploid wheat (SHW) and common wheat, SHW has been widely used in genetic studies. The transferability of simple sequence repeats (SSR) among common wheat and its donor species, Triticum turgidum and Aegilops tauschii, and their SHW suggested the possibility that some SSRs, specific for a single locus in common wheat, might appear in two or more loci in SHWs. This is an important genetic issue when using synthetic hexaploid wheat population and SSR for mapping. However, it is largely ignored and never empirically well verified. The present study addressed this issue by using the well-studied SSR marker Xgwm261 as an example. The Xgwm261 produced a 192 bp fragment specific to chromosome 2D in common wheat Chinese Spring, but generated a 176 bp fragment in the D genome of Ae. tauschii AS60. Chromosomal location and DNA sequence data revealed that the176 bp fragment also donated by 2B chromosome of durum wheat Langdon. These results indicated that although a single 176 bp fragment was appeared in synthetic hexaploid wheat Syn-SAU-5 between Langdon and AS60, the fragment contained two different loci, one from chromosome 2D of AS60 and the other from 2B of Langdon which were confirmed by the segregating analysis of SSR Xgwm261 in 185 plants from a F2 population between Syn-SAU-5 and Chinese Spring. If Xgwm261 in Syn-SAU-5 was considered as a single locus in genetic analysis, distorted segregation or incorrect conclusions would be yielded. A proposed strategy to avoid this problem is to include SHW’s parental T. turgidum and Ae. tauschii in SSR analysis as control for polymorphism detection. Key words: Synthetic hexaploid wheat, microsatellite, segregation distortion, Xgwm261, transferability


Author(s):  
O. Okhrymovych ◽  
◽  
S. Chebotar ◽  
G. Chebotar ◽  
D. Zharikova ◽  
...  

In this review, we discuss features of the molecular structure of known E-loci (early maturity) and their involvement in signaling to plant flowering, depending on the sensitivity of soybean genotypes to the photoperiod. These loci contribute to the adaptation of plants to a wide range of natural conditions due to mutations in genes and QTL that control flowering time. At the molecular level, E-genes are significantly different in structural features, origin and function. The lenghth of the identified genes range from one exon to 525 bp encoding the transcription factor (E1), up to 14 exons and about 20 kb for the GmGIa gene (E2). Among the functional mutations that in most cases lead to partial or complete loss of function, there are single-nucleotide substitutions or deletions, insertions of transposon-like sequences that can lead to amino acid substitutions in the protein, shift of the reading frame, appearance of the premature stop-codon. E-gene products are receptors of signals coming from the environment and they participate in signaling pathways that control the photoperiod. The overall impact and interactions between E-genes have not been fully studied yet, the molecular structure was investigated only for E1-E4, for which a genetic network of interactions was proposed, while at the same time five loci (E6-E9 and E11) were only mapped on soybean chromosomes, and the existence of a separate E5 locus has not yet been established. In eight of the 11 E-loci, the dominant allele causes late flowering. Also there is a pleiotropic effect of E-gene alleles on yield, plant height, stress resistance, and response to low temperatures. Knowledge of the allelic state of only some of the 11 genes is not sufficient. A comprehensive understanding of the functioning of the photoperiodic genetic response network is needed. E-genes are genetic determinants that can be used during selection and creation of new varieties with programmed rates of development.


Genome ◽  
2011 ◽  
Vol 54 (4) ◽  
pp. 273-284 ◽  
Author(s):  
Shunli Wang ◽  
Xiaohui Li ◽  
Ke Wang ◽  
Xiaozheng Wang ◽  
Shanshan Li ◽  
...  

Phylogenetic relationships between the C, U, N, and M genomes of Aegilops species and the genomes of common wheat and other related species were investigated by using three types of low-molecular-weight glutenin subunit (LMW-GS) genes at Glu-3 loci. A total of 20 LMW-GS genes from Aegilops and Triticum species were isolated, including 11 LMW-m type and 9 LMW-i type genes. Particularly, four LMW-m type and three LMW-i type subunits encoded by the genes on the C, N, and U genomes possessed an extra cysteine residue at conserved positions, which could provide useful information for understanding phylogenetic relationships among Aegilops and Triticum genomes. Phylogenetic trees constructed by using either LMW-i or the combination of LMW-m and LMW-s, as well as analysis of all the three types of LMW-GS genes together, demonstrated that the C and U genomes were closely related to the A genome, whereas the N and M genomes were closely related to the D genome. Our results support previous findings that the A genome was derived from Triticum uratu, the B genome was from Aegilops speltoides, and the D genome was from Aegilops tauschii. In addition, phylogenetic relationships among different genomes analysed in this study support the concept that Aegilops is not monophyletic.


Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 442 ◽  
Author(s):  
Carmela Fusco ◽  
Silvia Morlino ◽  
Lucia Micale ◽  
Alessandro Ferraris ◽  
Paola Grammatico ◽  
...  

FBN1 encodes fibrillin 1, a key structural component of the extracellular matrix, and its variants are associated with a wide range of hereditary connective tissues disorders, such as Marfan syndrome (MFS) and mitral valve–aorta–skeleton–skin (MASS) syndrome. Interpretations of the genomic data and possible genotype–phenotype correlations in FBN1 are complicated by the high rate of intronic variants of unknown significance. Here, we report two unrelated individuals with the FBN1 deep intronic variants c.6872-24T>A and c.7571-12T>A, clinically associated with MFS and MASS syndrome, respectively. The individual carrying the c.6872-24T>A variant is positive for aortic disease. Both individuals lacked ectopia lentis. In silico analysis and subsequent mRNA study by RT-PCR demonstrated the effect of the identified variant on the splicing process in both cases. The c.6872-24T>A and c.7571-12T>A variants generate the retention of intronic nucleotides and lead to the introduction of a premature stop codon. This study enlarges the mutation spectrum of FBN1 and points out the importance of intronic sequence analysis and the need for integrative functional studies in FBN1 diagnostics.


2021 ◽  
Author(s):  
Yvette Luyten ◽  
Deanna Hausman ◽  
Juliana C. Young ◽  
Lindsey A. Doyle ◽  
Natalia C. Ubilla-Rodriguez ◽  
...  

Bacteriophage exclusion (BREX) phage restriction systems are found in a wide range of bacteria. Various BREX systems encode unique combinations of proteins that usually include a site-specific methyltransferase; none appear to contain a nuclease. Here we describe the identification and characterization of a Type I BREX system from Acinetobacter and the effect of deleting each BREX ORF on growth, methylation and phage restriction. The analysis identified a previously uncharacterized gene at the 5-prime end of the BREX operon that is dispensable for methylation but involved in restriction. Biochemical and crystallographic analyses of this factor, which we term BrxR (BREX Regulator), demonstrate that it forms a homodimer and specifically binds a pseudo-palindromic DNA target site upstream of its transcription start site. Precise deletion of the BrxR gene causes cell toxicity, reduces phage restriction, and significantly increases the expression of BrxC. In contrast, the introduction of a premature stop codon into the BrxR gene has little effect, implying that the BrxR coding sequence and BrxR protein have independent functional roles in BREX regulation. We speculate that the BrxR coding sequence is involved in cis regulation of BREX activity and that the BrxR protein may play an additional regulatory role, perhaps during horizontal transfer of the system.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Paula Andreghetto Bracco ◽  
Ana Paula Santin Bertoni ◽  
Márcia Rosângela Wink

The protooncogenePCPHwas recently identified as being the ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5). This protooncogene is converted into an oncogene by a single base pair deletion, resulting in frame change and producing a premature stop codon, leading to a mutated protein (mt-PCPH) with only 27 kDa, which is much smaller than the original 47 kDa protein. Overexpression of the PCPH as well as the mutated PCPH increases the cellular resistance to stress and apoptosis. This is intriguing considering that the active form, that is, the oncogene, is the mutated PCPH. Several studies analyzed the expression of NTPDase5/mt-PCPH in a wide range of tumor cells and evaluated its role and mechanisms in cancer and other pathogenic processes. The main point of this review is to integrate the findings and proposed theories about the role played by NTPDase5/mt-PCPH in cancer progression, considering that these proteins have been suggested as potential early diagnostic tools and therapy targets.


Genome ◽  
2000 ◽  
Vol 43 (4) ◽  
pp. 689-697 ◽  
Author(s):  
E Pestsova ◽  
M W Ganal ◽  
M S Röder

The potential of Aegilops tauschii, the diploid progenitor of the D genome of wheat, as a source of microsatellite markers for hexaploid bread wheat was investigated. By screening lambda phage and plasmid libraries of Ae. tauschii genomic DNA, dinucleotide microsatellites containing GA and GT motifs were isolated and a total of 65 functional microsatellite markers were developed. All primer pairs that were functional in Ae. tauschii amplified well in hexaploid wheat. Fifty-five loci amplified by 48 primer sets were placed onto a genetic framework map of the reference population of the International Triticeae Mapping Initiative (ITMI) 'Opata 85' × 'W7984'. The majority of microsatellite markers could be assigned to the chromosomes of the D genome of wheat. The distribution of the markers along the chromosomes is random. Chromosomal location of 22 loci nonpolymorphic in the reference population was determined using nullitetrasomic lines of Triticum aestivum 'Chinese Spring'. The results of this study demonstrate the value of microsatellite markers isolated from Ae. tauschii for the study of bread wheat. The microsatellite markers developed improve the existing wheat microsatellite map and can be used in a wide range of genetic studies and breeding programs.Key words: Aegilops tauschii, wheat, molecular markers, genetic map, simple sequence repeats.


Function ◽  
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Rainelli Koumangoye ◽  
Lisa Bastarache ◽  
Eric Delpire

Abstract Among the electroneutral Na+-dependent chloride transporters, NKCC1 had until now evaded identification as a protein causing human diseases. The closely related SLC12A transporters, NKCC2 and NCC have been identified some 25 years ago as responsible for Bartter and Gitelman syndromes: two renal-dependent salt wasting disorders. Absence of disease was most surprising since the NKCC1 knockout mouse was shown in 1999 to be viable, albeit with a wide range of deleterious phenotypes. Here we summarize the work of the past 5 years that introduced us to clinical cases involving NKCC1. The most striking cases are of 3 children with inherited mutations, who have complete absence of NKCC1 expression. These cases establish that lack of NKCC1 causes deafness; CFTR-like secretory defects with mucus accumulation in lung and intestine; severe xerostomia, hypotonia, dysmorphic facial features, and severe neurodevelopmental disorder. Another intriguing case is of a patient with a dominant deleterious SLC12A2 allele. This de novo mutation introduced a premature stop codon leading to a truncated protein. This mutant transporter seems to exert dominant-negative effect on wild-type transporter only in epithelial cells. The patient who suffers from lung, bladder, intestine, pancreas, and multiple endocrine abnormalities has, however, normal hearing and cognition. Finally, new reports substantiate the haploinsufficiency prediction of the SLC12A2 gene. Cases with single allele mutations in SLC12A2 have been linked to hearing loss and neurodevelopmental disorders.


1996 ◽  
Vol 75 (06) ◽  
pp. 870-876 ◽  
Author(s):  
José Manuel Soria ◽  
Lutz-Peter Berg ◽  
Jordi Fontcuberta ◽  
Vijay V Kakkar ◽  
Xavier Estivill ◽  
...  

SummaryNonsense mutations, deletions and splice site mutations are a common cause of type I protein C deficiency. Either directly or indirectly by altering the reading frame, these' lesions generate or may generate premature stop codons and could therefore be expected to result in premature termination of translation. In this study, the possibility that such mutations could instead exert their pathological effects at an earlier stage in the expression pathway, through “allelic exclusion” at the RNA level, was investigated. Protein C (PROC) mRNA was analysed in seven Spanish type I protein C deficient patients heterozygous for two nonsense mutations, a 7bp deletion, a 2bp insertion and three splice site mutations. Ectopic RNA transcripts from patient and control lymphocytes were analysed by RT-PCR and direct sequencing of amplified PROC cDNA fragments. The nonsense mutations and the deletion were absent from the cDNAs indicating that only mRNA derived from the normal allele had been expressed. Similarly for the splice site mutations, only normal PROC cDNAs were obtained. In one case, exclusion of the mutated allele could be confirmed by polymorphism analysis. In contrast to these six mutations, the 2 bp insertion was not associated with loss of mRNA from the mutated allele. In this case, cDNA analysis revealed the absence of 19 bases from the PROC mRNA consistent with the generation and utilization of a cryptic splice site 3’ to the site of mutation, which would result in a frameshift and a premature stop codon. It is concluded that allelic exclusion is a common causative mechanism in those cases of type I protein C deficiency which result from mutations that introduce premature stop codons


Sign in / Sign up

Export Citation Format

Share Document