Complementary genes for reaction to Puccinia recondita tritici in Triticum aestivum. I. Genetic and linkage studies

1984 ◽  
Vol 26 (6) ◽  
pp. 723-735 ◽  
Author(s):  
R. P. Singh ◽  
R. A. McIntosh

Although confirmed instances of complementary genes for rust resistance are rare, two such genes designated A and B for seedling leaf rust resistance were identified in 'Gatcher' and certain other wheats. The two complementary genes in 'Gatcher' were separated in susceptible lines which, when intercrossed, again produced resistant progenies with the specificity of 'Gatcher.' The substitution of a chromosome 3B pair from seedling susceptible 'Hope' into seedling susceptible 'Chinese Spring' resulted in lines displaying similar leaf rust responses to 'Gatcher.' Resistant segregates occurred in segregating populations from crosses of several Sr2-bearing leaf rust susceptible wheats with 'Chinese Spring.' Hence 'Chinese Spring' carried one (A) of the complementary genes, whereas the second gene (B) was very closely linked with Sr2 (r < 0.5%) and was present in a wide range of wheats possessing Sr2. Two wheats carrying gene B lacked Sr2.Key words: leaf rust, stem rust, specificity, wheat.

Genome ◽  
2017 ◽  
Vol 60 (12) ◽  
pp. 1076-1085 ◽  
Author(s):  
M. Niranjana ◽  
Vinod ◽  
J.B. Sharma ◽  
Niharika Mallick ◽  
S.M.S. Tomar ◽  
...  

Leaf rust (Puccinia triticina) is a major biotic stress affecting wheat yields worldwide. Host-plant resistance is the best method for controlling leaf rust. Aegilops speltoides is a good source of resistance against wheat rusts. To date, five Lr genes, Lr28, Lr35, Lr36, Lr47, and Lr51, have been transferred from Ae. speltoides to bread wheat. In Selection2427, a bread wheat introgresed line with Ae. speltoides as the donor parent, a dominant gene for leaf rust resistance was mapped to the long arm of chromosome 3B (LrS2427). None of the Lr genes introgressed from Ae. speltoides have been mapped to chromosome 3B. Since none of the designated seedling leaf rust resistance genes have been located on chromosome 3B, LrS2427 seems to be a novel gene. Selection2427 showed a unique property typical of gametocidal genes, that when crossed to other bread wheat cultivars, the F1 showed partial pollen sterility and poor seed setting, whilst Selection2427 showed reasonable male and female fertility. Accidental co-transfer of gametocidal genes with LrS2427 may have occurred in Selection2427. Though LrS2427 did not show any segregation distortion and assorted independently of putative gametocidal gene(s), its utilization will be difficult due to the selfish behavior of gametocidal genes.


2013 ◽  
Vol 12 (9) ◽  
pp. 1580-1588 ◽  
Author(s):  
Li-hong SHI ◽  
Na ZHANG ◽  
Ya-ya HU ◽  
Xue-jun WEI ◽  
Wen-xiang YANG ◽  
...  

Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1127-1133 ◽  
Author(s):  
L. M. Oelke ◽  
J. A. Kolmer

Leaf rust, caused by Puccinia triticina Eriks., is the most common disease of wheat (Triticum aestivum L.) in the United States and worldwide. The objective of this study was to characterize seedling and adult plant leaf rust resistance in hard red spring wheat cultivars grown in Minnesota, North Dakota, and South Dakota, and postulate the identity of the seedling leaf rust resistance genes in the cultivars. Twenty-six cultivars, near-isogenic lines of Thatcher wheat that differ for single leaf rust resistance genes, and three wheat cultivars with known leaf rust resistance genes, were tested with 11 different isolates of leaf rust collected from the United States and Canada. The leaf rust infection types produced on seedling plants of the cultivars in greenhouse tests were compared with the infection types produced by the same isolates on the Thatcher near-isogenic lines to postulate which seedling leaf rust resistance genes were present. Seedling leaf rust resistance genes Lr1, Lr2a, Lr10, Lr16, Lr21, and Lr24 were postulated to be present in spring wheat cultivars. Seedling genes Lr3, Lr14a, and Lr23 likely were present in some cultivars but could not be clearly identified in this study. Most of the cultivars had some level of adult plant leaf rust resistance, most likely due to Lr34. Cultivars that had seedling resistance genes Lr1, Lr2a, Lr10, or Lr16 had poor to intermediate levels of leaf rust resistance in field plots. Cultivars with combinations of seedling resistance genes Lr16 and Lr24 with additional adult plant resistance were highly resistant to leaf rust.


Genome ◽  
1990 ◽  
Vol 33 (6) ◽  
pp. 937-940 ◽  
Author(s):  
S. S. Jones ◽  
J. Dvořák ◽  
C. O. Qualset

Homozygous recombinant substitution lines, derived from a cross of Triticum aestivum 'Chinese Spring' with a disomic substitution line of Triticum tauschii chromosome 1D in 'Chinese Spring', were used to investigate the linkage relationships among the loci Glu-D1, encoding high molecular weight glutenin storage proteins, Gli-D1, encoding gliadin storage proteins, Rg2, controlling glume color, and Lr21, conferring leaf-rust resistance. Gli-D1, on chromosome arm 1DS, is tightly linked to Rg2 and Lr21 (1.4 and 5.6% recombination, respectively). The order of the loci is Gli-D1–Rg2–Lr21. Glu-D1, on chromosome arm 1DL, segregates independently (P = 0.43) of Gli-D1, Rg2, and Lr21. The position of Glu-D1, Gli-D1, Rg2, and Lr21 in the genetic linkage map of chromosome 1D agrees with the position of storage protein, glume color, and rust-resistance loci on chromosomes 1A and 1B.Key words: leaf-rust resistance, seed storage protein, glutenin, gliadin, glume color, Triticum aestivum, Triticum tauschii.


Genome ◽  
1994 ◽  
Vol 37 (5) ◽  
pp. 813-822 ◽  
Author(s):  
R. L. Innes ◽  
E. R. Kerber

Twelve accessions of Triticum tauschii (Coss.) Schmal. were genetically analyzed for resistance to leaf rust (Puccinia recondita Rob. ex Desm.) and stem rust (Puccinia graminis Pers. f.sp. tritici Eriks. and E. Henn.) of common wheat (Triticum aestivum L.). Four genes conferring seedling resistance to leaf rust, one gene conferring seedling resistance to stem rust, and one gene conferring adult-plant resistance to stem rust were identified. These genes were genetically distinct from genes previously transferred to common wheat from T. tauschii and conferred resistance to a broad spectrum of pathogen races. Two of the four seedling leaf rust resistance genes were not expressed in synthetic hexaploids, produced by combining tetraploid wheat with the resistant T. tauschii accessions, probably owing to the action of one or more intergenomic suppressor loci on the A or B genome. The other two seedling leaf rust resistance genes were expressed at the hexaploid level as effectively as in the source diploids. One gene was mapped to the short arm of chromosome 2D more than 50 cM from the centromere and the other was mapped to chromosome 5D. Suppression of seedling resistance to leaf rust in synthetic hexaploids derived from three accessions of T. tauschii allowed the detection of three different genes conferring adult-plant resistance to a broad spectrum of leaf rust races. The gene for seedling resistance to stem rust was mapped to chromosome ID. The degree of expression of this gene at the hexaploid level was dependent on the genetic background in which it occurred and on environmental conditions. The expression of the adult-plant gene for resistance to stem rust was slightly diminished in hexaploids. The production of synthetic hexaploids was determined to be the most efficient and flexible method for transferring genes from T. tauschii to T. aestivum, but crossing success was determined by the genotypes of both parents. Although more laborious, the direct introgression method of crossing hexaploid wheat with T. tauschii has the advantages of enabling selection for maximum expression of resistance in the background hexaploid genotype and gene transfer into an agronomically superior cultivar.Key words: Triticum tauschii, rust resistance, gene expression, gene transfer, wheat, synthetic hexaploid.


1999 ◽  
Vol 89 (6) ◽  
pp. 518-521 ◽  
Author(s):  
E. R. Kerber ◽  
T. Aung

The common wheat cultivar Thatcher and the backcross derivative Canthatch are moderately or fully susceptible to several races of stem rust because of a suppressor on chromosome 7DL that inhibits the expression of the relevant resistance gene(s). The incorporation of leaf rust resistance gene Lr34 into ‘Thatcher’ is known to enhance stem rust resistance. The effect of this gene in a ‘Canthatch’ background and its relationship with the 7DL suppressor were determined by replacing chromosome 7D of ‘Canthatch’ with 7D of ‘Chinese Spring’, which possesses Lr34 on the short arm. ‘Canthatch’ nullisomic 7D was crossed with ‘Chinese Spring’, followed by a succession of backcrosses to the nullisomic recurrent parent. Homozygous resistant disomic and monosomic substitution lines were recovered that exhibited the same resistant reaction as that of ‘Thatcher’ possessing Lr34 and as that of ‘Canthatch’ nullisomic 7D, in which the 7DL suppressor is absent. The results indicate that, in ‘Canthatch’, Lr34 permits expression of resistance genes normally inhibited by the 7DL suppressor. Furthermore, it is likely that, in ‘Thatcher’ and ‘Thatcher’ back-cross derivatives, Lr34 inactivates the 7DL suppressor.


Sign in / Sign up

Export Citation Format

Share Document