Inheritance of leaf rust resistance in wheat lines carryingAegilops speltoides Tausch. translocation in Chinese Spring background

2008 ◽  
Vol 49 (2) ◽  
pp. 141-145 ◽  
Author(s):  
Urmil K. Bansal ◽  
Ram G. Saini ◽  
Renu Khanna
Plant Disease ◽  
2006 ◽  
Vol 90 (7) ◽  
pp. 853-857 ◽  
Author(s):  
S. Elyasi-Gomari ◽  
V. K. Panteleev

In 2002 and 2003, 1,300 isolates of Puccinia recondita f. sp. tritici were obtained from six commercial cultivars of wheat at three locations in the eastern forest-steppe region of Ukraine. All isolates were tested for virulence on an international set of eight differential cultivars. Seventeen known wheat leaf rust races and several new, unnamed races were identified. The most common races in each year were races 61, 149, and 192. In 2003, up to 20 isolates each of the seven most common leaf rust races plus 8 to 10 isolates of unnamed races were tested for virulence to 35 near-isogenic wheat lines with different single Lr genes for leaf rust resistance. Isolates were polymorphic for virulence on Lr1, Lr2a, Lr2b, Lr2c, Lr9, Lr19, Lr23, Lr26, and the combination Lr27 + Lr31. No isolates were found virulent on Lr24, Lr25, or Lr28, and few isolates were virulent on Lr9. Few isolates of known races but most isolates of the new, unnamed races were virulent on Lr19. The 35 Lr gene lines also were exposed to mixed-race inoculum in field plots to tests effectiveness of their resistance. Lines with Lr24, Lr25, and Lr28 suffered no leaf rust damage in the field, and lines with Lr9, Lr18, Lr35, Lr36, and the combination Lr27 + Lr31 showed less than 10% severity.


2013 ◽  
Vol 12 (9) ◽  
pp. 1580-1588 ◽  
Author(s):  
Li-hong SHI ◽  
Na ZHANG ◽  
Ya-ya HU ◽  
Xue-jun WEI ◽  
Wen-xiang YANG ◽  
...  

2016 ◽  
Vol 15 (1) ◽  
pp. 18-28 ◽  
Author(s):  
Ai-yong QI ◽  
Pei-pei ZHANG ◽  
Yue ZHOU ◽  
Zhan-jun YAO ◽  
Zai-feng LI ◽  
...  

2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 593-595
Author(s):  
M. Gál ◽  
L. Szunics ◽  
G. Vida ◽  
Lu. Szunics ◽  
O. Veisz ◽  
...  

The efficiency of leaf rust resistance genes in adult plants was studied on near-isogenic lines of Thatcher carrying known leaf rust resistance genes in the artificially inoculated leaf rust nursery of the Agricultural Research Institute of the Hungarian Academy of Sciences in Martonvásár over a five-year period (1997–2001). Eight of the wheat lines tested (Lr9, Lr19, Lr23, Lr24, Lr25, Lr29, Lr35, Lr37) exhibited little or no infection. Lines carrying genes Lr13, Lr44 and LrB were resistant in two years and those carrying Lr34, Lr38 and LrW in three years, after which they suffered moderate or heavy infection. Three lines (Lr12, Lr17, Lr32) proved to be moderately resistant. The majority of the wheat lines tested became heavily infected.


Genome ◽  
1990 ◽  
Vol 33 (6) ◽  
pp. 937-940 ◽  
Author(s):  
S. S. Jones ◽  
J. Dvořák ◽  
C. O. Qualset

Homozygous recombinant substitution lines, derived from a cross of Triticum aestivum 'Chinese Spring' with a disomic substitution line of Triticum tauschii chromosome 1D in 'Chinese Spring', were used to investigate the linkage relationships among the loci Glu-D1, encoding high molecular weight glutenin storage proteins, Gli-D1, encoding gliadin storage proteins, Rg2, controlling glume color, and Lr21, conferring leaf-rust resistance. Gli-D1, on chromosome arm 1DS, is tightly linked to Rg2 and Lr21 (1.4 and 5.6% recombination, respectively). The order of the loci is Gli-D1–Rg2–Lr21. Glu-D1, on chromosome arm 1DL, segregates independently (P = 0.43) of Gli-D1, Rg2, and Lr21. The position of Glu-D1, Gli-D1, Rg2, and Lr21 in the genetic linkage map of chromosome 1D agrees with the position of storage protein, glume color, and rust-resistance loci on chromosomes 1A and 1B.Key words: leaf-rust resistance, seed storage protein, glutenin, gliadin, glume color, Triticum aestivum, Triticum tauschii.


2020 ◽  
Vol 110 (4) ◽  
pp. 892-899 ◽  
Author(s):  
Zhikang Li ◽  
Chan Yuan ◽  
Sybil A. Herrera-Foessel ◽  
Mandeep S. Randhawa ◽  
Julio Huerta-Espino ◽  
...  

The durum wheat lines Heller#1 and Dunkler from the International Maize and Wheat Improvement Center Global Wheat Program showed moderate and stable adult plant resistance to leaf rust under high disease pressure over field environments in northwestern Mexico. Leaf rust phenotyping was performed on two recombinant inbred line (RIL) populations derived from crosses of Heller#1 and Dunkler with the susceptible parent Atred#2, conducted under artificially induced Puccinia triticina epidemics in 2013, 2014, 2015, and 2016. The Atred#2 × Heller#1 and Atred#2 × Dunkler populations were genotyped by single nucleotide polymorphism (SNP) platforms and diversity arrays technology markers, respectively. Four leaf rust resistance quantitative trait loci were detected simultaneously in the two RIL populations: Lr46, QLr.cim-2BC, QLr.cim-5BL, and QLr.cim-6BL based on phenotypic data across all four crop seasons. They explained 11.7 to 46.8%, 7.2 to 26.1%, 8.4 to 24.1%, and 12.4 to 28.5%, respectively, of the phenotypic variation for leaf rust resistance in Atred#2 × Heller#1 and 16.3 to 56.6%, 6.7 to 15.7%, 4.1 to 10.1%, and 5.1 to 20.2% of the variation in the Atred#2 × Dunkler population. Only the resistance allele of QLr.cim-2BC was from the susceptible parent Atred#2, and resistance alleles at other loci came from the resistant parents Heller#1 and Dunkler. The SNP markers closely linked to Lr46 and QLr.cim-2BC were converted to kompetitive allele specific PCR markers for use in marker-assisted selection to improve leaf rust resistance through crosses with Heller#1 and Dunkler sources.


1984 ◽  
Vol 26 (6) ◽  
pp. 723-735 ◽  
Author(s):  
R. P. Singh ◽  
R. A. McIntosh

Although confirmed instances of complementary genes for rust resistance are rare, two such genes designated A and B for seedling leaf rust resistance were identified in 'Gatcher' and certain other wheats. The two complementary genes in 'Gatcher' were separated in susceptible lines which, when intercrossed, again produced resistant progenies with the specificity of 'Gatcher.' The substitution of a chromosome 3B pair from seedling susceptible 'Hope' into seedling susceptible 'Chinese Spring' resulted in lines displaying similar leaf rust responses to 'Gatcher.' Resistant segregates occurred in segregating populations from crosses of several Sr2-bearing leaf rust susceptible wheats with 'Chinese Spring.' Hence 'Chinese Spring' carried one (A) of the complementary genes, whereas the second gene (B) was very closely linked with Sr2 (r < 0.5%) and was present in a wide range of wheats possessing Sr2. Two wheats carrying gene B lacked Sr2.Key words: leaf rust, stem rust, specificity, wheat.


Sign in / Sign up

Export Citation Format

Share Document