scholarly journals Morphological description of a novel synthetic allotetraploid(A1A1G3G3) of Gossypium herbaceum L.and G.nelsonii Fryx. suitable for disease-resistant breeding applications

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242620
Author(s):  
Xiaomin Yin ◽  
Rulin Zhan ◽  
Yingdui He ◽  
Shun Song ◽  
Lixia Wang ◽  
...  

Wild species of Gossypium ssp. are an important source of traits for improving commercial cotton cultivars. Previous reports show that Gossypium herbaceum L. and Gossypium nelsonii Fryx. have better disease resistance characteristics than commercial cotton varieties. However, chromosome ploidy and biological isolation make it difficult to hybridize diploid species with the tetraploid Gossypium hirsutum L. We developed a new allotetraploid cotton genotype (A1A1G3G3) using a process of distant hybridization within wild cotton species to create new germplasms. First of all, G. herbaceum and G. nelsonii were used for interspecific hybridization to obtain F1 generation. Afterwards, apical meristems of the F1 diploid cotton plants were treated with colchicine to induce chromosome doubling. The new interspecific F1 hybrid and S1 cotton plants originated from chromosome duplication, were tested via morphological and molecular markers and confirmed their tetraploidy through flowrometric and cytological identification. The S1 tetraploid cotton plants was crossed with a TM-1 line and fertile hybrid offspring were obtained. These S2 offsprings were tested for resistance to Verticillium wilt and demonstrated adequate tolerance to this fungi. The results shows that the new S1 cotton line could be used as parental material for hybridization with G. hirsutum to produce pathogen-resistant cotton hybrids. This new S1 allotetraploid genotype will contributes to the enrichment of Gossypium germplasm resources and is expected to be valuable in polyploidy evolutionary studies.

2011 ◽  
Vol 62 (10) ◽  
pp. 859 ◽  
Author(s):  
Satya Narayan Jena ◽  
Anukool Srivastava ◽  
Uma Maheswar Singh ◽  
Sribash Roy ◽  
Nandita Banerjee ◽  
...  

An understanding of the level of genetic diversity is a prerequisite for designing efficient breeding programs. Fifty-one cultivars of four cotton species (Gossypium hirsutum, G. barbadense, G. herbaceum and G. arboreum) representing core collections at four major cotton research stations with a wide range of eco-geographical regions in India were examined for the level of genetic diversity, distinct subpopulations and the level of linkage disequilibrium (LD) using 1100 amplified fragment length polymorphism (AFLP) markers with 16 primer pairs combinations. The AFLP markers enabled a reliable assessment of inter- and intra-specific genetic variability with a heterogeneous genetic structure. Higher genetic diversity was noticed in G. herbaceum, followed by G. arboreum. The genetic diversity in tetraploid cotton species was found to be less than that in the diploid species. The genotypes VAGAD, RAHS14, IPS187, 221 557, Jayhellar of G. herbaceum and 551, DLSA17, 221 566 of G. arboreum were identified as the most diverse parents, useful for quantitative trait loci (QTL) analysis in diploid cotton. Similarly, LRA 5166, AS3 and MCU5 of G. hirsutum and B1, B3, Suvin of G. barbadense were most diverse to develop mapping populations for fibre quality. The internal transcribed spacer sequences were sufficient to resolve different species and subspecies of diploid cotton. Low level of genome-wide LD was detected in the entire collection (r2 = 0.07) as well as within the four species (r2 = 0.11–0.15). A strong agreement was noticed between the clusters constructed on the basis of morphological and genotyping data.


Author(s):  
Anh Phu Nam Bui ◽  
Vimal Kumar Balasubramanian ◽  
Thuan-Anh Nguyen-Huu ◽  
Tuan-Loc Le ◽  
Hoang Dung Tran

Background: The cultivated tetraploid cotton species (AD genomes) was originated from two ancestral diploid species (A and D genomes). While the ancestral A-genome species produce spinnable fibers, the D- genome species do not. Cotton fibers are unicellular trichomes originating from seed coat epidermal cells, and currently there is an immense interest in understanding the process of fiber initiation and development. Current knowledge demonstrates that there is a great of deal of resemblance in initiation mechanism between by Arabidopsis trichome and cotton fiber. Methodology: In this study, we performed comparative functional studies between A genome and D-genome species in cotton by using Arabidopsis trichome initiation as a model. Four cotton genes TTG3, MYB2, DEL61 and DEL65 were amplified from A-genome and D-genome species, and transformed into their homolog trichomeless mutants Arabidopsis ttg1, gl1, and gl3egl3, respectively. Results: Our data indicated that the transgenic plants expressing TTG3 and MYB2 genes from A-genome and D-genome species complement the ttg1 and gl1 mutants, respectively. We also discovered complete absences of two functional basic helix loop helix (bHLH) proteins (DEL65/DEL61) in D- diploid species and one (DEL65) that is functional in A-genome species, but not from D-genome species. This observation is consistent with the natural phenomenon of spinnable fiber production in A- genome species and absence in D-genome species.


1999 ◽  
Vol 26 (2) ◽  
pp. 101 ◽  
Author(s):  
Qing Liu ◽  
Surinder P. Singh ◽  
Curt L. Brubaker ◽  
Peter J. Sharp ◽  
Allan G. Green ◽  
...  

A cDNA (ghFAD2-1) encoding a seed-specific microsomal ω-6 desaturase was isolated from a cotton (Gossypium hirsutum L. cv. Deltapine-16) embryo cDNA library. The deduced amino acid sequence showed substantial similarity to other plant microsomal ω-6 desaturases. Northern blot analysis indicated that the ghFAD2-1 transcript was specifically induced during embryo development and expression of the transcript could not be detected in leaves. Southern blot analysis using the coding region and 3′ untranslated region of ghFAD2-1 revealed that microsomal ω-6 desaturase in cotton is encoded by a small multigene family. There are at least two copies of ghFAD2-1 in two tetraploid cotton species (G. hirsutum L. and G. barbadense L.) and at least one copy in diploid cotton species (G. herbaceum L., G. raimondii Ulbrich and G. robinsonii Mueller).


2020 ◽  
Author(s):  
Zhaoguo Li ◽  
Zhen Liu ◽  
Yangyang Wei ◽  
Yuling Liu ◽  
Pengtao Li ◽  
...  

Abstract Background: The enzyme myo-inositol oxygenase (MIOX) catalyzes the myo-inositol into glucuronic acid. Previous studies indicated that MIOX may play an important role in plant responses to abiotic stresses. Cotton is a major source of natural and renewable textile. However, the MIOX gene family of cotton has not been systematically identified and characterized yet.Results: In this study, 6 MIOX genes were identified from all of the three diploid cotton species (Gossypium arboretum, Gossypium herbaceum and Gossypium raimondii), 12 MIOX genes were identified from two domesticated tetraploid cottons Gossypium hirsutum, Gossypium barbadense, and 11 MIOX genes were identified from three wild tetraploid cottons Gossypium tomentosum, Gossypium mustelinum and Gossypium darwinii. The number of MIOX genes in tetraploid cotton genome is roughly twice that of diploid cotton genome. Members of MIOX family were classified into six groups based on the phylogenetic analysis. Integrated analysis of collinearity events and chromosome locations suggested that both whole genome duplication and segmental duplication events contributed to the expansion of MIOX genes during cotton evolution. The ratios of non-synonymous (Ka) and synonymous (Ks) substitution rates revealed that purifying selection was the main force driving the evolution of MIOX genes. Numerous cis-acting elements related to light responsive element, defense and stress responsive element were identified in the promoter of the MIOX genes. Expression analyses of MIOX genes based on RNA-seq data showed that MIOX genes within the same group shared similar expression patterns with each other.Conclusions: In this work, we systematically analyzed MIOX genes from eight Gossypium genomes and the Gossypioides kirkii genome using a set of bioinformatics approaches. All of these results provide the foundation for further study of the biological functions of MIOX genes in cotton environmental adaptability.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254111
Author(s):  
Zhaoguo Li ◽  
Zhen Liu ◽  
Yangyang Wei ◽  
Yuling Liu ◽  
Linxue Xing ◽  
...  

The enzyme myo-inositol oxygenase (MIOX) catalyzes the myo-inositol into glucuronic acid. In this study, 6 MIOX genes were identified from all of the three diploid cotton species (Gossypium arboretum, Gossypium herbaceum and Gossypium raimondii) and Gossypioides kirkii, 12 MIOX genes were identified from two domesticated tetraploid cottons Gossypium hirsutum, Gossypium barbadense, and 11 MIOX genes were identified from three wild tetraploid cottons Gossypium tomentosum, Gossypium mustelinum and Gossypium darwinii. The number of MIOX genes in tetraploid cotton genome is roughly twice that of diploid cotton genome. Members of MIOX family were classified into six groups based on the phylogenetic analysis. Integrated analysis of collinearity events and chromosome locations suggested that both whole genome duplication and segmental duplication events contributed to the expansion of MIOX genes during cotton evolution. The ratios of non-synonymous (Ka) and synonymous (Ks) substitution rates revealed that purifying selection was the main force driving the evolution of MIOX genes. Numerous cis-acting elements related to light responsive element, defense and stress responsive element were identified in the promoter of the MIOX genes. Expression analyses of MIOX genes based on RNA-seq data and quantitative real time PCR showed that MIOX genes within the same group shared similar expression patterns with each other. All of these results provide the foundation for further study of the biological functions of MIOX genes in cotton environmental adaptability.


2020 ◽  
Vol 21 (5) ◽  
pp. 1675 ◽  
Author(s):  
Xueying Liu ◽  
Philippe Moncuquet ◽  
Qian-Hao Zhu ◽  
Warwick Stiller ◽  
Zhengsheng Zhang ◽  
...  

Cotton fibres, as single cells arising from the seed coat, can be classified as lint and fuzz according to their final length. Gossypium arboreum is a cultivated diploid cotton species and a potential donor of the A subgenome of the more widely grown tetraploid cottons. In this study, we performed genetic studies on one lintless and seven fuzzless G. arboreum accessions. Through association and genetic linkage analyses, a recessive locus on Chr06 containing GaHD-1 was found to be the likely gene underlying the lintless trait. GaHD-1 carried a mutation at a splicing acceptor site that resulted in alternative splicing and a deletion of 247 amino acid from the protein. The regions containing GaGIR1 and GaMYB25-like were found to be associated with fuzz development in G. arboreum, with the former being the major contributor. Comparative transcriptome analyses using 0-5 days post-anthesis (dpa) ovules from lintless, fuzzless, and normal fuzzy seed G. arboreum accessions revealed gene modules and hub genes potentially important for lint and fuzz initiation and development. Three significant modules and 26 hub genes associated with lint fibre initiation were detected by weighted gene co-expression network analysis. Similar analyses identified three vital modules and 10 hub genes to be associated with fuzz development. The findings in this study contribute to understanding the complex molecular mechanism(s) regulating fibre initiation and development and indicate that G. arboreum may have fibre developmental pathways different from tetraploid cotton. It also provides candidate genes for further investigation into modifying fibre development in G. arboreum.


Author(s):  
Corrinne E Grover ◽  
Daojun Yuan ◽  
Mark A Arick ◽  
Emma R Miller ◽  
Guanjing Hu ◽  
...  

Abstract Cotton is an important textile crop whose gains in production over the last century have been challenged by various diseases. Because many modern cultivars are susceptible to several pests and pathogens, breeding efforts have included attempts to introgress wild, naturally resistant germplasm into elite lines. Gossypium stocksii is a wild cotton species native to Africa, which is part of a clade of vastly understudied species. Most of what is known about this species comes from pest resistance surveys and/or breeding efforts, which suggests that G. stocksii could be a valuable reservoir of natural pest resistance. Here we present a high-quality de novo genome sequence for G. stocksii. We compare the G. stocksii genome with resequencing data from a closely related, understudied species (G. somalense) to generate insight into the relatedness of these cotton species. Finally, we discuss the utility of the G. stocksii genome for understanding pest resistance in cotton, particularly resistance to cotton leaf curl virus.


Author(s):  
Mirzakamol S. Ayubov ◽  
Ibrokhim Y. Abdurakhmonov ◽  
Venkateswara R. Sripathi ◽  
Sukumar Saha ◽  
Tokhir M. Norov ◽  
...  

1983 ◽  
Vol 8 ◽  
pp. 101-126 ◽  
Author(s):  
G. Vida ◽  
A. Major ◽  
T. Reichstein

Nine species of "Cheilantoid ferns" are known to grow in Macaronesia and the Mediterranean basin. Two of them (lacking a pseudo-indusium and having the basic chromosome number X = 29), both aggregate species which we prefer to retain in Notholaena, are not included in this study. The other seven species (with distinct pseudo-indusium and the basic chromosome number X = 30), which we accept as members of the genus Cheilanthes Sw. sensu stricto, were subjected to detailed genome analysis of their natural and experimentally produced hybrids and shown to represent an aggregate of four very distinct ancestral diploids and three allotetraploids. The latter must have once been formed by chromosome doubling in the three diploid hybrids of C. maderensis Lowe with the other three diploid species. Theoretically three more allotetraploids would be possible but their formation has obviously been prevented by the geographical separation of the three respective diploids. The most widely distributed of the tetraploids, i.e. C. pteridioides (Reich.) C.Chr. has also been resynthesized from its ancestors (still sympatric) under experimental conditions. The intermediate morphology of the allotetraploids (as compared with their diploid ancestors) is obviously the reason why their status and existence has so long escaped recognition in Europe. These seven species form a natural group and, in our opinion, should not be divided into sections.


Sign in / Sign up

Export Citation Format

Share Document