Nematode biodiversity assessments need vouchered databases: A BOLD reference library for plant-parasitic nematodes in the superfamily Criconematoidea

Genome ◽  
2020 ◽  
pp. 1-10
Author(s):  
Thomas O. Powers ◽  
Timothy S. Harris ◽  
Rebecca S. Higgins ◽  
Peter G. Mullin ◽  
Kirsten S. Powers

Nematodes are frequently cited as underrepresented in faunistic surveys using DNA barcoding with COI. This underrepresentation is generally attributed to a limited presence of nematodes in DNA databases which, in turn, is often ascribed to structural variability and high evolutionary rates in nematode mitochondrial genomes. Empirical evidence, however, indicates that many taxa are readily amplified with primer sets specifically targeted to different nematode families. Here we report the development of a COI reference library of 1726 specimens in the terrestrial plant parasitic nematode superfamily Criconematoidea. Specimens collected during an ecoregion survey of North America were individually photographed, measured, and PCR amplified to produce a 721 bp region of COI for taxonomic analysis. A neighbor-joining tree structured the dataset into 179 haplotype groups that generally conformed to morphospecies in traditional analysis or Barcode Index Numbers (BINs) in the BOLD system, although absent formal BIN membership due to insufficient overlap with the Folmer region of COI. Approximately one-third of the haplotype groups could be associated with previously described species. The geographic distribution of criconematid nematode species suggests a structure influenced by the major habitat types in the United States and Canada. All sequences collected in the ecoregion survey are deposited in BOLD.

Polar Biology ◽  
2020 ◽  
Vol 43 (10) ◽  
pp. 1655-1661
Author(s):  
Łukasz Flis ◽  
Franciszek Wojciech Kornobis ◽  
Magdalena Kubicz ◽  
Jón Guðmundsson

Abstract The plant-parasitic nematodes of Iceland are poorly understood. To address this, a study of the nematodes of the families Criconematidae and Hemicycliophoridae was performed in 2015. Soil samples were taken from underneath various host plants in different locations in Iceland. The identification was performed on the basis of the general morphology and subsequently confirmed by molecular markers (D2-D3 28S rDNA). The study revealed the presence of nematode specimens belonging to four species of the family Criconematidae: Criconemoides amorphus, Criconema demani, Mesocriconema xenoplax and Mesocriconema curvatum, as well as one species Hemicycliophora conida of the family Hemicycliophoridae. To our knowledge, this is the first record of the occurrence of these nematode species in Iceland. The species identified are economically important plant-parasitic nematodes of likely interest to—among others—Icelandic plant protection professionals. This report broadens our knowledge of Iceland’s nematode biodiversity; moreover, morphological analyses and molecular data may contribute to better understanding the origin of nematode species on the island of Iceland.


Plant Disease ◽  
2011 ◽  
Vol 95 (1) ◽  
pp. 74-74 ◽  
Author(s):  
P. Agudelo ◽  
D. Harshman

Lilyturf (Liriope muscari (Decne.) L.H. Bailey), an herbaceous plant, is commonly used in landscaping including borders (along sidewalks, driveways, and trees) and mass plantings as groundcover in the southeastern United States. In December of 2009, a soil sample was submitted to our lab for diagnosis of plant-parasitic nematodes from an area planted with lilyturf located on the Clemson University main campus. A high population density (1,220 individuals/100 cm3 of soil) of spiral nematodes (Scutellonema brachyurum (Steiner, 1938) Andrássy, 1958) was found by routine extraction by sugar centrifugal flotation (3). Other plant-parasitic nematodes, mainly ring nematodes (10 individuals/100 cm3) and stubby root nematodes (10 individuals/100 cm3), were present. To verify if high numbers of spiral nematodes were consistently associated with lilyturf, 20 additional soil and root samples were collected from different places on the campus. In all cases, S. brachyurum was found in densities ranging from 680 to 1,600 individuals/100 cm3 of soil (average of 1,210 individuals/100 cm3). The species was identified by morphological characters of females, including well developed stylet (26 to 30 μm long), no spermatheca, no sperm in uterus, tail broadly rounded with 8 to 12 annules between anus and tail, and scutella at anus level. As is commonly the case for this species, no males were found in any of the samples collected. Examination of the roots revealed numerous, small, reddish brown, necrotic lesions, apparently caused by the feeding and penetration of S. brachyurum. Host plant suitability and pathogenicity of the nematode were tested in the greenhouse. Ten nematode-free lilyturf plants grown individually in 15-cm-diameter plastic pots with pasteurized soil were inoculated with 1,000 spiral nematodes each. Ten uninoculated plants were kept under identical conditions as controls. Three months after inoculation, soil population densities were measured and reproduction factors were calculated to be between 2.8 and 5.4 (final population density divided by initial population density) for the 10 plants. Characteristic lesions previously described were observed in the roots of all inoculated plants, along with slight chlorosis of foliage. These symptoms were not observed on control plants. Spiral nematodes may attack the roots and stolons of lilyturf as ectoparasites or they may enter them and feed in the cortex as endoparasites. Although root lesions were common on affected plants, root injury in general was not severe and generalized root decay was not observed on either the collected plants or those from the greenhouse study. Reports on the pathogenicity of S. brachyurum are variable. Moderate damage was recorded on amaryllis and other ornamentals (4), while measurable damage was observed on tobacco (2), with approximately 100 individuals/100 cm3 of soil, and severe damage on Aloe vera ((L.) Burm. f.), with approximately 500 individuals/100 cm3 (1). To our knowledge, this is the first report of S. brachyurum causing visible symptoms on lilyturf. As the interstate and international movement of perennial plants continues to grow, awareness of the host status of potentially harmful nematodes becomes essential information. References: (1) R. P. Esser et al. Nematropica 16:65, 1986. (2) T. W. Graham. Phytopathology (Abstr.) 45:347, 1955. (3) W. R. Jenkins. Plant Dis. Rep. 48:692, 1964. (4) L. Nong and G. F. Weber. (Abstr.) Phytopathology 54:902, 1964.


2016 ◽  
Vol 10 (1) ◽  
pp. 10-14
Author(s):  
Arvind K. Keshari ◽  
Ranjana Gupta

During a survey for plant parasitic nematodes affecting various vegetable crops grown in three hilly districts surrounding Kathmandu Valley, Nepal, five species of order Tylenchidae are reported for the first time from Nepal.The nematode species are Hoplolaimus indicus, Tylenchorhynchus mashhoodi, Helicotylenchus incisus, Microposthonia paraxestis and Hemicriconemoides cocophilus.All the species are illustrated with line diagrams and described with their morphometric data along with localities and host plants.International Journal of Life Sciences 10 (1) : 2016; 10-16


Plant Disease ◽  
2015 ◽  
Vol 99 (7) ◽  
pp. 982-993 ◽  
Author(s):  
Yongsan Zeng ◽  
Weimin Ye ◽  
James Kerns ◽  
Lane Tredway ◽  
Samuel Martin ◽  
...  

The near-full-length 18S ribosomal DNA (rDNA) gene and internal transcribed spacer 1 region were amplified and sequenced from 52 nematode populations belonging to 28 representative species in 13 families recovered from turfgrasses in North Carolina (38 populations) and South Carolina (14 populations). This study also included 13 nematode populations from eight other plant hosts from North Carolina for comparison. Nematodes were molecularly characterized and the phylogenetic relationships were explored based on 18S rDNA sequences. Phylogenetic analysis using Bayesian inference was performed using five groups of the plant-parasitic nematode populations Tylenchids, Criconematids, Longidorids, Xiphinematids, and Trichodorids. The 65 nematode populations were clustered correspondingly within appropriate positions of 13 families, including Belonolaimidae, Caloosiidae, Criconematidae, Dolichodoridae, Hemicycliophoridae, Hoplolaimidae, Heteroderidae, Longidoridae, Meloidogynidae, Paratylenchidae, Pratylenchidae, Telotylenchidae, and Trichodoridae. This study confirms previous morphological-based identification of the plant-parasitic nematode species found in turfgrasses and provides a framework for future studies of plant-parasitic nematodes associated with turfgrasses based upon DNA sequences and phylogenetic relationships.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 471-475 ◽  
Author(s):  
Enrique E. Pérez ◽  
Edwin E. Lewis

A 2-year experiment was conducted to test suppression of plant-parasitic nematodes on English boxwood using entomopathogenic nematodes and 3.5% thyme oil formulated as Promax. Treatments were Steinernema riobrave formulated as BioVector and S. feltiae formulated as Nemasys, both applied at a rate of 2.5 billion infective juveniles/ha, thyme oil at rate of 9.3 liters/ha, and nontreated control. In the 2001 season, treatment with S. feltiae reduced (P ≤ 0.05) the population growth of Tylenchorhynchus sp. 7 days after treatment and Hoplolaimus sp. 30 and 60 days after treatment. Treatment with S. riobrave reduced (P ≤ 0.05) the population growth of all plant-parasitic nematode species at all sampling dates, with the exception of Mesocriconema sp. 30 days after treatment and Tylenchorhynchus sp. and Rotylenchus buxophilus 60 days after treatment. Treatment with thyme oil reduced (P ≤ 0.05) the population growth of all plant-parasitic nematode genera at all sampling dates except Tylenchorhynchus sp. and R. buxophilus 60 days after treatment. In the 2002 season, treatment with S. feltiae had no effect on nematode population growth. Treatment with S. riobrave reduced (P ≤ 0.05) the population growth of R. buxophilus 7 days after treatment, and all plant-parasitic nematodes 30 and 60 days after treatment except Hoplolaimus sp. 30 days after treatment and Mesocriconema sp. 60 days after treatment. Treatment with thyme oil reduced (P ≤ 0.05) the population growth at all sampling dates of plant-parasitic nematodes except Mesocriconema sp. 60 days after treatment.


HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 264D-264
Author(s):  
John R. Clark ◽  
Robert Robbins

Two replicated blueberry plantings, one containing one highbush, (Vaccinium corymbosum) two southern highbush and two rabbiteye (V.ashei) cultivars, and another containing one highbush and three rabbiteye cultivars were sampled in October, 1991 and plant parasitic nematodes extracted and counted. Additionally, 15 commercial rabbiteye plantings were sampled. Standard and southern highbush samples had total plant parasitic nematode levels of 228-451 nematodes/250 ml soil compared to 4-14 nematodes/250 ml soil for rabbiteye. No difference in nematode population was found among the standard highbush ('Bluecrop') and southern highbush ('Cooper', 'Gulfcoast') cultivars. Xiphinema americanum was the most common nematode species found, along with very small populations of Paratrichodorus minor. All commercial plantings had lower nematode levels in samples from the blueberry plants as compared to those from the sod middles between the rows. Nematode levels from commercial plantings ranged from 1477/250ml soil from blueberry plants and 11-1546/250 ml soil from the sod middles. Species found at high levels in the sod samples were usually distinctly different from those found associated with the blueberry plants.


2021 ◽  
Author(s):  
Radwa G. Mostafa ◽  
Aida M. El-Zawahry ◽  
Ashraf E. M. Khalil ◽  
Ameer E. Elfarash ◽  
Ali D. A. Allam

Abstract Background Plant-parasitic nematodes are extremely dangerous pests in a variety of economically important crops. The purpose of this study was a survey of all nematode species existing in banana from three sites in Assiut Governorate, Egypt and to characterize the most common species by morphological, morphometric and molecular techniques (PCR with species-specific primers). Then, study of resistance or sensitivity of some banana cultivars to root-knot nematodes.Methods and Results Four nematodes, Meloidogyne, Rotylenchulus reniformis, Helicotylenchus and Pratylenchus were isolated and identified from soil and root samples collected from banana plants. Most frequently occurring of plant parasitic nematode species in banana was Meloidogyne. Former research found differences in species and in resistance to root-knot nematodes among the examined plant cultivars. Identification of Root-knot nematodes by Characterize of morphometric, molecularly, morphological isolate of Meloidogyne related to banana plants. The results revealed that the identified nematode species, Meloidogyne javanica, is the most common plant-parasitic nematodes in all locations. Data on the susceptibility of the tested banana cultivars to M. javanica revealed that Grand Naine was highly susceptible (HS) however, Magraby was susceptible (S) but Williams and Hindi cultivars were moderately resistant (MR).Conclusions we concluded that a survey revealed the significant prevalence of Meloidogyne javanica, the most important nematodes on banana in Assiut. The morphometric, morphological, and molecular identification were harmonic with one another. In addition to the host response of certain banana cultivars, to M. javanica that resistance is of significance and can be helpful to incorporate through planning control measures for root- knot nematodes.


Koedoe ◽  
1992 ◽  
Vol 35 (1) ◽  
Author(s):  
Esther Van den Berg

Two new O^nia Southern, 1914 species are described and figured from Giant's Castle Nature Reserve, Kamberg Nature Reserve and the Royal Natal National Park. O^ma naomiae spec. nov. females are characterised by having 10 to 12 longitudinal rows of scales on 63 to 69 retrorse body annuli; scales haphazardly arranged on first nine to 10 annuli; scales mostly with two projections, becoming longer toward tail end; all scales with minute protuberances on outer edges; lip region with one annulus with a greater diameter than first body annulus. Juveniles with 14 to 16 longitudinal rows of scales on 73 to 76 retrorse body annuli; each scale bearing five to seven sharply pointed processes; one lip annulus with an equal diameter to first body annulus. O^ma ueckermanni spec. nov. females are characterised by eight longitudinal rows of rounded scales on 60 to 67 body annuli becoming longer toward tail tip where they bear two, three or four-pronged processes; roughly sculptured recessed part of annulus extends to follow the outline of the scale almost forming a pillar between two succeeding scales; one lip annulus with a greater diameter than first body annulus; raised labial area with six pseudolips and no submedian lobes; margin of lip annulus with rounded tooth-like projections; stylet 49,3 to 60,7 ^m long. A list is given of the 16 known plant-parasitic nematodes found in these areas.


Sign in / Sign up

Export Citation Format

Share Document