Physical Fitness and Plasma Non-Enzymatic Antioxidant Status at Rest and After a Wingate Test

2003 ◽  
Vol 28 (1) ◽  
pp. 79-92 ◽  
Author(s):  
Carole Groussard ◽  
Guillaume Machefer ◽  
Françoise Rannou ◽  
Henri Faure ◽  
Hassane Zouhal ◽  
...  

We tested seven physical education students whether 30-s sprint anaerobic exercise (Wingate test) would result in oxidative stress (evaluated by lipid radical levels) sufficient to alter plasma non-enzymatic antioxidant status (plasma uric acid, ascorbic acid, α-tocopherol, β-carotene). This study demonstrates that 1) Wingate test increases plasma uric and ascorbic acid concentrations (p < .05), and decreases plasma α-tocopherol and β-carotene levels (p < .05); 2) lipid radical levels at rest and sprint performance are negatively correlated with resting plasma uric acid and α-tocopherol concentrations (p < .05). In conclusion, this study 1) demonstrates that a 30-s sprint anaerobic exercise is associated with acute changes in plasma non-enzymatic antioxidant status, 2) indicates that the subjects with largest leg peak power are those who exhibit the lowest plasma antioxidant status at rest (uric acid and α-tocopherol), 3) and suggests that antioxidant intake by maintaining plasma antioxidant concentration at rest in the normal range might protect athletes against oxidative stress induced by exercise. Key words: ascorbic acid, α-tocopherol, β-carotene, uric acid, oxidative stress

2009 ◽  
Vol 19 (5) ◽  
pp. 443-456 ◽  
Author(s):  
Vitor Teixeira ◽  
Hugo Valente ◽  
Susana Casal ◽  
Franklim Marques ◽  
Pedro Moreira

Strenuous physical activity is known to generate reactive oxygen species to a point that can exceed the antioxidant defense system and lead to oxidative stress. Dietary intake of antioxidants, plasma enzymatic (superoxide dismutase, glutathione reductase [Gr], and glutathione peroxidase [GPx]) activities, nonenzymatic (total antioxidant status [TAS], uric acid, α-tocopherol, retinol, α-carotene, β-carotene, lycopene, and lutein + zeaxanthin) antioxidants, and markers of lipid peroxidation (thiobarbituricacid-reactive substances [TBARS]) and muscle damage (creatine kinase [CK]) were measured in 17 elite male kayakers and canoeists under resting conditions and in an equal number of age- and sex-matched sedentary individuals. Athletes showed increased plasma values of α-tocopherol (p = .037), α-carotene (p = .003), β-carotene (p = .007), and superoxide dismutase activity (p = .002) and a lower TAS level (p = .030). Antioxidant intake (α-tocopherol, vitamin C, and β-carotene) and plasmatic GPx, Gr, lycopene, lutein + zeaxanthin, retinol, and uric acid levels were similar in both groups. Nevertheless, TBARS (p < .001) and CK (p = .011) levels were found to be significantly higher in the kayakers and canoeists. This work suggests that despite the enhanced levels of antioxidants, athletes undergoing regular strenuous exercise exhibited more oxidative stress than sedentary controls.


2004 ◽  
Vol 92 (2) ◽  
pp. 203-206 ◽  
Author(s):  
Jens Lykkesfeldt ◽  
Michael Viscovich ◽  
Henrik E. Poulsen

It has been reported that smokers have higher plasma malondialdehyde concentrations compared with non-smokers. However, smokers have also consistently been shown to have a lower intake of fruits and vegetables as well as lower plasma antioxidant concentrations. Since both the latter issues may well influence the malondialdehyde concentration, we wanted to investigate if the observed difference between smokers and non-smokers was a result of differences in antioxidant status or if a more direct effect of smoking could also be isolated. In the present study, the plasma malondialdehyde and antioxidant profiles of a cohort of smokers (n48) and non-smokers (n32) were compared. While there was no significant difference in the major plasma antioxidants measured, i.e. ascorbic acid, α- and γ-tocopherol and uric acid, we found a significant effect of smoking on plasma malondialdehyde (P=0·0003). Consequently, the present study suggests that lipid peroxidation as measured by plasma malondialdehyde is induced by smokingper se. While poor antioxidant status presumably also affects lipid peroxidation, it is only partly responsible for the increased level found in smokers in general.


2013 ◽  
Vol 33 (10) ◽  
pp. 868-875 ◽  
Author(s):  
Agata Wawrzyniak ◽  
Magdalena Górnicka ◽  
Jadwiga Hamułka ◽  
Małgorzata Gajewska ◽  
Małgorzata Drywień ◽  
...  

2008 ◽  
Vol 114 (8) ◽  
pp. 553-560 ◽  
Author(s):  
Marcel C. G. van de POLL ◽  
Cornelis H. C. Dejong ◽  
Marc A. J. G. Fischer ◽  
Aalt Bast ◽  
Ger H. Koek

Oxidative stress mediates cell injury during ischaemia/reperfusion. On the other hand, experimental findings suggest that ROS (reactive oxygen species) induce processes leading to ischaemic preconditioning. The extent and source of oxidative stress and its effect on antioxidant status in the human liver during intermittent ischaemia and reperfusion remains ill-defined. Therefore the aim of the present study was to investigate the occurrence of oxidative stress in humans undergoing liver resection. Liver biopsies, and arterial and hepatic venous blood samples were taken from ten patients undergoing hepatectomy with an intermittent Pringle manoeuvre. Plasma MDA (malondialdehyde) and hepatic GSSG levels were measured as markers of oxidative stress and plasma uric acid as a marker of xanthine oxidase activity. In addition, changes in hepatosplanchnic consumption of plasma antioxidants and hepatic levels of carotenoids and glutathione (GSH) were measured. After ischaemia, hepatosplanchnic release of MDA and increased hepatic GSSG levels were found. This was accompanied by the release of uric acid, reflecting xanthine oxidase activity. During reperfusion, ongoing oxidative stress was observed by further increases in hepatic GSSG content and hepatosplanchnic MDA release. Uric acid release was minimal during reperfusion. A gradual decrease in plasma antioxidant capacity and net hepatosplanchnic antioxidant uptake was observed upon prolonged cumulative ischaemia. Oxidative stress occurs during hepatic ischaemia in man mainly due to xanthine oxidase activity. Interestingly, the gradual decline in plasma antioxidant capacity and net hepatosplanchnic antioxidant uptake during prolonged cumulative ischaemia, preserved both hydrophilic and lipophilic hepatic antioxidant levels. Decreasing plasma levels and net hepatosplanchnic uptake of plasma antioxidants may warrant antioxidant supplementation, although it should be clarified to what extent limitation of oxidative stress compromises ROS-dependent pathways of ischaemic preconditioning.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 301
Author(s):  
Cayetano Javier Carrión-García ◽  
Eduardo Jesús Guerra-Hernández ◽  
Belén García-Villanova ◽  
Mauro Serafini ◽  
María-José Sánchez ◽  
...  

(1) Background: Little is known about the interlinkages between dietary and plasma non-enzymatic antioxidant capacity (D-NEAC and P-NEAC, respectively) and the body’s antioxidant and inflammation response. Our aim was to explore these associations in 210 participants from two Spanish European Prospective Investigation into Cancer and Nutrition (EPIC) centers. (2) Methods: D-NEAC was estimated using published NEAC values in food. P-NEAC and total polyphenols (TP) were quantified by FRAP (ferric-reducing antioxidant power), TRAP (total radical-trapping antioxidant parameter), TEAC-ABTS (trolox equivalent antioxidant capacity-Azino Bis Thiazoline Sulfonic), ORAC (oxygen radical absorbance capacity) and Folin–Ciocalteu assays. Nutrient antioxidants (carotenes, α-tocopherol, ascorbic acid, retinol, uric acid, Q9 and Q10 coenzymes) and inflammation markers (IL-6, IL-8, CRP, TNF-α, PAI-I, resistin and adiponectin) were also analyzed. Spearman correlation and linear regression analyses were performed in association analyses. Analyses were stratified by covariates and groups were defined using cluster analysis. (3) Results: P-FRAP was correlated with D-NEAC, and significantly associated with P-NEAC in multivariate adjusted models. P-FRAP levels were also significantly associated with plasma antioxidants (log2 scale: TP β = 0.26; ascorbic acid β = 0.03; retinol β = 0.08; α-tocopherol β = 0.05; carotenes β = 0.02; Q10 β = 0.06; uric acid β = 0.25), though not with inflammation-related biomarkers. Different profiles of individuals with varying levels of P-NEAC and biomarkers were found. (4) Conclusions: P-NEAC levels were to some extent associated with D-NEAC and plasma antioxidants, yet not associated with inflammation response.


2010 ◽  
Vol 103 (11) ◽  
pp. 1648-1656 ◽  
Author(s):  
Corinna Franke ◽  
Hans Demmelmair ◽  
Tamas Decsi ◽  
Cristina Campoy ◽  
Milagros Cruz ◽  
...  

Maternal supplementation with long-chain PUFA, to improve infant neurological development, might cause additional increase of oxidative stress. Pregnant women aged 18–41 years were randomised into one of four supplementation groups. From week 22 on, they received supplements containing either modified fish oil (n69), 5-methyl-tetrahydro-folate (n65), both (n64), or placebo (n72). Plasma Trolox-equivalent antioxidative capacity (TEAC), concentrations of α-tocopherol, retinol, β-carotene, free thiol groups, uric acid and thiobarbituric acid-reactive substances (TBARS) were determined at weeks 20 and 30 and at delivery. The studied antioxidants showed no significant differences between the four supplementation groups. At week 30 plasma TBARS levels were found to be significantly higher in the fish oil group (0·80 (sem0·04) μmol/l) than in the folate (0·67 (sem0·03) μmol/l;P = 0·024) and control (0·69 (sem0·04) μmol/l;P = 0·01) groups. Concentrations of retinol and free thiol groups decreased during pregnancy, whereas uric acid increased and β-carotene as well as TEAC showed only minor changes. Fish oil supplementation during the second half of pregnancy appears not to decrease antioxidant status. The increased TBARS levels at week 30 may indicate a period of increased oxidative stress in plasma at this time.


Author(s):  
Udedi Stanley Chidi ◽  
Ani Onuabuchi Nnenna ◽  
Asogwa Kingsley Kelechi ◽  
Maduji Fitzcharles Chijindu ◽  
Okafor Clinton Nebolisa

This study investigated the in-vitro antioxidant activity of ethanol leaf extract of Justicia carnea and its effect on antioxidant status of alloxan-induced diabetic albino rats. The in-vitro antioxidant activity was assayed by determining the total phenol, flavonoids, ascorbic acid, β-carotene and lycopene contents and by using 2,2 diphenyl-1-picrylhydrazyl (DPPH) radical, reducing antioxidant power and inhibition of lipid peroxidation antioxidant systems. Oxidative stress was produced in rats by single intraperitoneal injection of 150 mg/kg alloxan and serum concentration of malonaldehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) were determined. Five experimental groups of rats (n=6) were used for the study. Two groups of diabetic rats received oral daily doses of 100 and 200 mg/kg Justicia carnea leaf extract respectively while gilbenclamide (5 mg/ml); a standard diabetic drug was also given to a specific group for 14 days. From the result, the leaf extract contained a higher concentration of flavonoids followed byphenols, ascorbic acid, lycopene and β-carotene. The extract displayed more potent reducing power ability with EC50 of 40 µg/ml compared to BHA (EC50 of 400µg/ml). The percentage DPPH radical scavenging activity of the extract was also higher with EC50 of 200µg/ml and increased with increase in concentration while BHA had EC50of 320µg/ml. The inhibition of lipid peroxidation also increased with increase in concentration with EC50 of 58µg/ml and comparable with BHA (EC50=60µg/ml). The effect of the plant extract on antioxidant enzyme activities was concentration-dependent. Administration of 100mg/kg of the plant extract resulted in a significant decrease (p<0.05) in serum MDA concentration, while 200 mg/kg of the extract caused a significant (p˂0.05) increase in superoxide dismutase (SOD) and catalase activities with a non-significant increase (p>0.05) in the serum level of MDA when compared with the diabetic untreated group. These findings suggest that ethanol leaf extract of Justicia carnea have antioxidant properties and could handle diabetes-induced oxidative stress.


Medicina ◽  
2019 ◽  
Vol 55 (4) ◽  
pp. 88 ◽  
Author(s):  
Katarzyna Neubauer ◽  
Radoslaw Kempinski ◽  
Malgorzata Matusiewicz ◽  
Iwona Bednarz-Misa ◽  
Malgorzata Krzystek-Korpacka

Background and objectives: Oxidative stress signalling plays a monumental role in inflammatory bowel disease (IBD). Reduction of oxidative stress might control inflammation, block tissue damage, and reverse natural history of IBD. We assessed the serum concentrations of free thiols (FT) and uric acid (SUA), together constituting a large part of nonenzymatic serum antioxidant capacity, as well as total antioxidant status (TAS) with reference to IBD phenotype, activity, co-occurrence of anemia, and treatment with azathioprine (AZA) and corticosteroids (CS). Additionally, we appraised the potential of uric acid, thiol stress, and TAS as mucosal healing (MH) markers in ulcerative colitis. Materials and methods: SUA, FT, and TAS were measured colorimetrically using, respectively, uricase, Ellman’s and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) methods. Results: The study group consisted of 175 individuals: 57 controls, 71 ulcerative colitis (UC), and 47 Crohn’s disease (CD) patients. When compared to controls, SUA levels were significantly lower in patients with CD, and FT and TAS levels were significantly lower in patients with CD and UC. In UC patients, SUA, FT, and TAS inversely correlated with the severity of bowel inflammation. As MH markers, SUA displayed better overall accuracy and higher specificity than FT. In active CD, FT, and SUA were significantly lower in patients with anemia. FT was significantly lower in patients treated with corticosteroids. Conclusions: IBD patients, regardless the disease phenotype, have systemic thiol stress, depleted total antioxidant capacity, and reduced concentrations of uric acid, reflecting, to various degrees, clinical and local disease activity as well as presence of anaemia, the most common extraintestinal manifestation of IBD. Evaluation of systemic total antioxidant status may be useful in noninvasive assessment of mucosal healing. Our findings on thiol stress provide an additional aspect on adverse effects of corticosteroids therapy.


Sign in / Sign up

Export Citation Format

Share Document