Validity of cycling peak power as measured by a short-sprint test versus the Wingate anaerobic test

2006 ◽  
Vol 31 (3) ◽  
pp. 186-189 ◽  
Author(s):  
Juan Del Coso ◽  
Ricardo Mora-Rodríguez

To validate the measurement of peak power output (PPO) using a short cycling sprint test (inertial load (IL) test), we compare it to the widely accepted Wingate anaerobic test (WAnT). Fifteen healthy, young, active subjects performed 2 experimental trials. In each trial, subjects warmed up and sprinted 4 times for the IL test. After recovery, they cycled for 30 s at maximum capacity for the WAnT. The experimental trial was replicated 3 d later to test for reliability. Inter- and intra-day PPO measured with the IL test was very reliable (R1 = 0.99 and R1 = 0.94, respectively). The correlation between the IL and WAnT was highly significant (r = 0.82; P < 0.001), although the absolute PPO values were markedly higher for the IL test (1268 ± 41 W vs. 786 ± 27 W; P < 0.001). In conclusion, cycling PPO can be validly assessed with the IL test. The higher PPO attained with an IL test could be related to better identification of peak power, since both velocity and resistance are free to vary during the sprint in comparison with the WAnT, where resistance is fixed. Owing to the short duration of the sprint (4 s) and high intra-day reliability despite a short recovery time (180 s), the IL test is optimal for repeated measurements of anaerobic performance.Key words: inertial load, neuromuscular power, cycle ergometer, intra-day reliability, performance.

2010 ◽  
Vol 67 (3) ◽  
pp. 220-224 ◽  
Author(s):  
Aleksandar Klasnja ◽  
Miodrag Drapsin ◽  
Damir Lukac ◽  
Patrik Drid ◽  
Slavko Obadov ◽  
...  

Background/Aim. The Wingate anaerobic test is a valid and reliable method of measuring anaerobic capacity. The aim of this study was to determine whether other modified test can be used instead of the Wingate test. Methods. A group of 30 sedentary young men were first tested with a cycle ergometer (classic Wingate test), and then with a dynamometer during 30 s of 'all out' leg extension exercise (modified Wingate test; WAnTe) in order to test anaerobic capacity. Subsequent correlations between these tests were made. Results. Peak power, mean power on cycling ergometer in absolute and relative values were 463 ? 105 W, 316.7 ? 63.8 W, 5.68 ? 1.17 W/kg, 3.68 ? 0.78 W/kg, respectively. On a dynamometer absolute and relative values of maximal and mean load in kg and power in Watts were 136.54 ? 21.3 kg, 1.67 ? 0.26; 128.65 ? 19.93 kg, 1.57 ? 0.24 kg, 657 ? 125.87 W, and 8 ? 1.54 W/kg, respectively. There was no correlation between 5 s intervals of the classic Wingate test and WAnTe during the first, fourth and fifth intervals, but in the second (r = 0.49, p < 0.05), third (r = 0.38, p < 0.05) and last 5 s intervals (r = 0.39, p < 0.05), and also in peak power and mean power (r = 0.42, p < 0.05 and r = 0.45, p < 0.05 respectively), a significant positive correlation was detected. Conclusion. A modified Wingate test of leg extension on a dynamometer in sedentary young men shows a correlation with the classic Wingate test only in parameters of peak power, and mean power and the second, the third and the last 5 s intervals. Because of that it should only be used for orientation, whereas for precise measurements of anaerobic capacity the classic Wingate test should be used.


2021 ◽  
Vol 11 (16) ◽  
pp. 7417
Author(s):  
Arkaitz Castañeda-Babarro

The Wingate Anaerobic Test (WAT) has been widely used since its creation in 1974. The WAT involves performing a 30 s “all-out” cycling test. The test is currently applied with some modifications, partly due to the evolution of the material used to perform it. The purpose of this text is to act as a guide for the correct use and application of the test, as well as to highlight the importance of controlling many of the variables that may influence its results. Methods: A literature search was conducted in PUBMED/MEDLINE and Web of Science with different combinations of keywords all related to the WAT to obtain a search of 113 papers. Results and discussion: It was observed that variables such as the duration of the test or the resistance used in the cycle ergometer must be adjusted according to the objective and the population evaluated, while others such as the warm-up or the supplementation of different substances can improve performance on the WAT. Conclusions: In order to apply the WAT correctly, variables such as duration, resistance used or warm-up time and intensity must be adjusted according to the evaluated subjects and the aim of the study. Other variables such as position on the bike or equipment used should also be controlled if we want to guarantee its replicability.


2020 ◽  
Vol 15 (7) ◽  
pp. 1005-1011
Author(s):  
Alannah K.A. McKay ◽  
Peter Peeling ◽  
Martyn J. Binnie ◽  
Paul S.R. Goods ◽  
Marc Sim ◽  
...  

Purpose: To assess the efficacy of a topical sodium bicarbonate (0.3 g/kg body weight NaHCO3) application (PR lotion; Amp Human) on blood buffering capacity and performance in recreationally active participants (study A) and moderately trained athletes (study B). Methods: In Study A, 10 participants completed 2 experimental trials: oral NaHCO3 (0.3 g/kg body weight + placebo lotion) or PR lotion (0.9036 g/kg body weight + oral placebo) applied 90 minutes prior to a cycling task to exhaustion (30-s sprints at 120% peak power output with 30-s rest). Capillary blood was collected and analyzed for pH, bicarbonate, and lactate every 10 minutes throughout the 90-minute loading period and postexercise at 5, 10, and 15 minutes. In Study B, 10 cyclists/triathletes completed 2 experimental trials, applying either PR or placebo lotion 30 minutes prior to a cycling performance task (3 × 30-s maximal sprints with 90-s recovery). Capillary blood samples were collected at baseline, preexercise, and postexercise and analyzed as per study A. Results: In Study A, pH and bicarbonate were significantly elevated from baseline after 10 minutes in the oral NaHCO3 condition and throughout recovery compared with no elevation in the PR lotion condition (P < .001). No differences in cycling time occurred between PR lotion (349 [119] s) and oral NaHCO3 (363 [80] s; P = .697). In Study B, no differences in blood parameters, mean power (P = .108), or peak power (P = .448) were observed between conditions. Conclusions: PR lotion was ineffective in altering blood buffering capacity or enhancing performance in either trained or untrained individuals.


Author(s):  
Theresa Schörkmaier ◽  
Yvonne Wahl ◽  
Christian Brinkmann ◽  
Wilhelm Bloch ◽  
Patrick Wahl

AbstractRecent studies have shown that the oxygenated hemoglobin level can be enhanced during rest through the application of nonivamide-nicoboxil cream. However, the effect of nonivamide-nicoboxil cream on oxygenation and endurance performance under hypoxic conditions is unknown. Therefore, the purpose of this study was to investigate the effects of nonivamide-nicoboxil cream on local muscle oxygenation and endurance performance under normoxic and hypoxic conditions. In a cross-over design, 13 athletes (experienced cyclists or triathletes [age: 25.2±3.5 years; VO2max 62.1±7.3 mL·min−1·kg−1]) performed four incremental exercise tests on the cycle ergometer under normoxic or hypoxic conditions, either with nonivamide-nicoboxil or placebo cream. Muscle oxygenation was recorded with near-infrared spectroscopy. Capillary blood samples were taken after each step, and spirometric data were recorded continuously. The application of nonivamide-nicoboxil cream increased muscle oxygenation at rest and during different submaximal workloads as well as during physical exhaustion, irrespective of normoxic or hypoxic conditions. Overall, there were no significant effects of nonivamide-nicoboxil on peak power output, maximal oxygen uptake or lactate concentrations. Muscle oxygenation is significantly higher with the application of nonivamide-nicoboxil cream. However, its application does not increase endurance performance.


2009 ◽  
Vol 23 (9) ◽  
pp. 2598-2604 ◽  
Author(s):  
Michael F Zupan ◽  
Alan W Arata ◽  
Letitia H Dawson ◽  
Alfred L Wile ◽  
Tamara L Payn ◽  
...  

2006 ◽  
Vol 1 (2) ◽  
pp. 122-136 ◽  
Author(s):  
Hans Luttikholt ◽  
Lars R. McNaughton ◽  
Adrian W. Midgley ◽  
David J. Bentley

Context:There is currently no model that predicts peak power output (PPO) thereby allowing comparison between different incremental exercise test (EXT) protocols. In this study we have used the critical power profile to develop a mathematical model for predicting PPO from the results of different EXTs.Purpose:The purpose of this study was to examine the level of agreement between actual PPO values and those predicted from the new model.Methods:Eleven male athletes (age 25 ± 5 years, VO2max 62 ± 8 mL · kg–1 · min–1) completed 3 laboratory tests on a cycle ergometer. Each test comprised an EXT consisting of 1-minute workload increments of 30 W (EXT30/1) and 3-minute (EXT25/3) and 5-minute workload increments (EXT25/5) of 25 W. The PPO determined from each test was used to predict the PPO from the remaining 2 EXTs.Results:The differences between actual and predicted PPO values were statistically insignificant (P > .05). The random error components of the limits of agreement of ≤30 W also indicated acceptable levels of agreement between actual and predicted PPO values.Conclusions:Further data collection is necessary to confirm whether the model is able to predict PPO over a wide range of EXT protocols in athletes of different aerobic and anaerobic capacities.


2005 ◽  
Vol 100 (3) ◽  
pp. 607-614 ◽  
Author(s):  
Athanasios Kasabalis ◽  
Helen Douda ◽  
Savvas P. Tokmakidis

The aim of the present study was to evaluate the anaerobic power of elite male volleyball players, using the Wingate Anaerobic Test to examine the relationship between anaerobic power and jumping performance. Athletes ( n = 56) and Nonathletes ( n = 53) were divided into three age groups: Adults (18–25 yr.), Juniors (15–16 yr.), and Youth (10–11 yr.). Measurements of height, body mass, vertical jump and Wingate scores indicated higher values for athletes. The specific training effects of anaerobic power were more pronounced at the age of 10–11 years than for Nonathletes. A significant correlation coefficient between peak power and vertical jump was found for Athletes ( r = .86) and for the total group ( r = .82). These results indicated that vertical jump may predict the maximal anaerobic power and could be used by coaches as a practical and easy-to-apply field screening test for evaluation in volleyball training.


2007 ◽  
Vol 17 (2) ◽  
pp. 140-151 ◽  
Author(s):  
Andrea D. Marjerrison ◽  
Jonah D. Lee ◽  
Anthony D. Mahon

This study examined the effect of pre exercise carbohydrate (CHO) feeding on performance on a Wingate anaerobic test (WAnT) in 11 boys (10.2 ± 1.3 y old). Four WAnTs with 2 min recovery were performed 30 min after consuming a CHO (1 g CHO/kg) or placebo drink. Peak power (PP) and mean power (MP) were similar between trials. PP ranged from 241.1 ± 82.2 to 223.1 ± 57.9 W with carbohydrate and from 238.2 ± 76.1 to 223.4 ± 52.3 W with placebo. MP ranged from 176.3 ± 58.4 to 151.1 ± 37.5 W with carbohydrate versus 178.0 ± 45.8 to 159.1 ± 32.7 W with placebo. Pre exercise glucose was significantly higher in CHO versus placebo (7.0 ± 1.0 vs. 5.5 ± 0.5 mmol/L), but post exercise values were not different. Blood lactate was similar between trials but increased over time. This study found that the ingestion of a CHO solution before exercise did not influence power output during repeated performances of the WAnT.


Sign in / Sign up

Export Citation Format

Share Document