Leptin and Reproduction: Is it a Critical Link Between Adipose Tissue, Nutrition, and Reproduction?

1999 ◽  
Vol 24 (4) ◽  
pp. 317-336 ◽  
Author(s):  
Farah S.L. Thong ◽  
Terry E. Graham

Exercise-associated reproductive disorders are frequently reported among recreationally active and elite female athletes. Although an association between exercise and menstrual disorders has been established, the mechanism by which exercise disrupts reproductive function remains unknown. Recent findings suggest that low energy availability rather than inadequate body fatness or exercise stress is likely the mechanism by which exercise impinges negatively on the hypothalamic-pituitary-ovarian axis in female athletes. The peripheral signal that informs the neural network of energy availability remains unknown. The identification of the adipocyte-derived ob gene product, leptin, and subsequent findings of its association with reproduction in both rodents and humans, led to speculations that it may be involved in the interactions between nutrition and reproduction. This review article focuses on leptin's role in modulating reproduction, and in particular, as a peripheral signal of nutritional status that integrates adipose tissue, nutrition, and reproduction in female athletes. Key words: female athletes, ob gene, exercise, energy balance, amenorrhea

2018 ◽  
Vol 53 (10) ◽  
pp. 628-633 ◽  
Author(s):  
Kathryn E Ackerman ◽  
Bryan Holtzman ◽  
Katherine M Cooper ◽  
Erin F Flynn ◽  
Georgie Bruinvels ◽  
...  

Low energy availability (EA) is suspected to be the underlying cause of both the Female Athlete Triad and the more recently defined syndrome, Relative Energy Deficiency in Sport (RED-S). The International Olympic Committee (IOC) defined RED-S as a syndrome of health and performance impairments resulting from an energy deficit. While the importance of adequate EA is generally accepted, few studies have attempted to understand whether low EA is associated with the health and performance consequences posited by the IOC.ObjectiveThe purpose of this cross-sectional study was to examine the association of low EA with RED-S health and performance consequences in a large clinical population of female athletes.MethodsOne thousand female athletes (15–30 years) completed an online questionnaire and were classified as having low or adequate EA. The associations between low EA and the health and performance factors listed in the RED-S models were evaluated using chi-squared test and the odds ratios were evaluated using binomial logistic regression (p<0.05).ResultsAthletes with low EA were more likely to be classified as having increased risk of menstrual dysfunction, poor bone health, metabolic issues, haematological detriments, psychological disorders, cardiovascular impairment and gastrointestinal dysfunction than those with adequate EA. Performance variables associated with low EA included decreased training response, impaired judgement, decreased coordination, decreased concentration, irritability, depression and decreased endurance performance.ConclusionThese findings demonstrate that low EA measured using self-report questionnaires is strongly associated with many health and performance consequences proposed by the RED-S models.


Author(s):  
Ida A. Heikura ◽  
Arja L.T. Uusitalo ◽  
Trent Stellingwerff ◽  
Dan Bergland ◽  
Antti A. Mero ◽  
...  

We aimed to (a) report energy availability (EA), metabolic/reproductive function, bone mineral density, and injury/illness rates in national/world-class female and male distance athletes and (b) investigate the robustness of various diagnostic criteria from the Female Athlete Triad (Triad), Low Energy Availability in Females Questionnaire, and relative energy deficiency in sport (RED-S) tools to identify risks associated with low EA. Athletes were distinguished according to benchmarks of reproductive function (amenorrheic [n = 13] vs. eumenorrheic [n = 22], low [lowest quartile of reference range;n = 10] versus normal testosterone [n = 14]), and EA calculated from 7-day food and training diaries (< or >30 kcal·kg−1fat-free mass·day−1). Sex hormones (p < .001), triiodothyronine (p < .05), and bone mineral density (females,p < .05) were significantly lower in amenorrheic (37%) and low testosterone (40%; 15.1 ± 3.0 nmol/L) athletes, and bone injuries were ∼4.5-fold more prevalent in amenorrheic (effect size = 0.85, large) and low testosterone (effect size = 0.52, moderate) groups compared with others. Categorization of females and males using Triad or RED-S tools revealed that higher risk groups had significantly lower triiodothyronine (female and male Triad and RED-S:p < .05) and higher number of all-time fractures (male Triad:p < .001; male RED-S and female Triad:p < .01) as well as nonsignificant but markedly (up to 10-fold) higher number of training days lost to bone injuries during the preceding year. Based on the cross-sectional analysis, current reproductive function (questionnaires/blood hormone concentrations) appears to provide a more objective and accurate marker of optimal energy for health than the more error-prone and time-consuming dietary and training estimation of EA. This study also offers novel findings that athlete health is associated with EA indices.


2018 ◽  
Vol 50 (5S) ◽  
pp. 742-743
Author(s):  
Bryan Holtzman ◽  
Allyson L. Parziale ◽  
Katherine M. Cooper ◽  
Erin Flynn ◽  
Adam S. Tenforde ◽  
...  

2014 ◽  
Vol 99 (11) ◽  
pp. 4037-4050 ◽  
Author(s):  
Laurent Maïmoun ◽  
Neoklis A. Georgopoulos ◽  
Charles Sultan

Context: Puberty is a crucial period of dramatic hormonal changes, accelerated growth, attainment of reproductive capacity, and acquisition of peak bone mass. Participation in recreational physical activity is widely acknowledged to provide significant health benefits in this period. Conversely, intense training imposes several constraints, such as training stress and maintenance of very low body fat to maximize performance. Adolescent female athletes are therefore at risk of overtraining and/or poor dietary intake, which may have several consequences for endocrine function. The “adaptive” changes in the hypothalamic-pituitary-gonadal, -adrenal, and somatotropic axes and the secretory role of the adipose tissue are reviewed, as are their effects on growth, menstrual cycles, and bone mass acquisition. Design: A systematic search on Medline between 1990 and 2013 was conducted using the following terms: “intense training,” “physical activity,” or “exercise” combined with “hormone,” “endocrine,” and “girls,” “women,” or “elite female athletes.” All articles reporting on the endocrine changes related to intense training and their potential implications for growth, menstrual cycles, and bone mass acquisition were considered. Results and Conclusion: Young female athletes present a high prevalence of menstrual disorders, including delayed menarche, oligomenorrhea, and amenorrhea, characterized by a high degree of variability according to the type of sport. Exercise-related reproductive dysfunction may have consequences for growth velocity and peak bone mass acquisition. Recent findings highlight the endocrine role of adipose tissue and energy balance in the regulation of homeostasis and reproductive function. A better understanding of the mechanisms whereby intense training affects the endocrine system may orient research to develop innovative strategies (ie, based on nutritional or pharmacological approaches and individualized modalities of training and competition) to improve the medical care of these adolescents and protect their reproductive function.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 873
Author(s):  
Filipe Jesus ◽  
Inês Castela ◽  
Analiza M Silva ◽  
Pedro A. Branco ◽  
Mónica Sousa

Low energy availability (LEA) causes impaired physiological functioning. Cross-country running is a weight-sensitive sport, making athletes more prone to LEA. We aimed to estimate the prevalence of elite European cross-country athletes at risk of LEA using the LEA in Females Questionnaire (LEAF-Q) and to analyze demographic and physical characteristics that are associated with LEA. Athletes ≥ 18 years competing at the 26th European Cross-Country Championships (n = 602) were invited to complete a questionnaire (sociodemographic, training, anthropometric characteristics, and LEAF-Q). A total of 207 valid surveys were collected (83 females, 22.1 (4.0) years, and 124 males, 22.3 (4.1) years), and 16 surveys were excluded. A high prevalence of athletes at risk of LEA (64.3%) was observed, being higher in females than in males (79.5 and 54.0% respectively, p < 0.001). More than half of athletes (54.1%, n = 112) reported bowel movements once a week or more rarely, while 33 female athletes (41.3%) did not report normal menstruation. Overall, cross-country athletes are at high risk of LEA. Moreover, a high prevalence of gastrointestinal and menstrual impairments was reported. Hence, athletes should be followed by multidisciplinary teams to inform, prevent, and treat LEA and its effects.


1998 ◽  
Vol 84 (1) ◽  
pp. 37-46 ◽  
Author(s):  
A. B. Loucks ◽  
M. Verdun ◽  
E. M. Heath ◽  

Loucks, A. B., M. Verdun, and E. M. Heath. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J. Appl. Physiol.84(1): 37–46, 1998.—We tested two hypotheses about the disruption of luteinizing hormone (LH) pulsatility in exercising women by assaying LH in blood samples drawn at 10-min intervals over 24 h from nine young, habitually sedentary, regularly menstruating women on days 8, 9, or 10 of two menstrual cycles after 4 days of intense exercise [E = 30 kcal ⋅ kg lean body mass (LBM)−1 ⋅ day−1at 70% of aerobic capacity]. To test the hypothesis that LH pulsatility is disrupted by low energy availability, we controlled the subjects’ dietary energy intakes (I) to set their energy availabilities (A = I − E) at 45 and 10 kcal ⋅ kg LBM−1 ⋅ day−1during the two trials. To test the hypothesis that LH pulsatility is disrupted by the stress of exercise, we compared the resulting LH pulsatilities to those previously reported in women with similar controlled energy availability who had not exercised. In the exercising women, low energy availability reduced LH pulse frequency by 10% ( P < 0.01) during the waking hours and increased LH pulse amplitude by 36% ( P = 0.05) during waking and sleeping hours, but this reduction in LH pulse frequency was blunted by 60% ( P = 0.03) compared with that in the previously studied nonexercising women whose low energy availability was caused by dietary restriction. The stress of exercise neither reduced LH pulse frequency nor increased LH pulse amplitude (all P > 0.4). During exercise, the proportion of energy derived from carbohydrate oxidation was reduced from 73% while A = 45 kcal ⋅ kg LBM−1 ⋅ day−1to 49% while A = 10 kcal ⋅ kg LBM−1 ⋅day−1( P < 0.0001). These results contradict the hypothesis that LH pulsatility is disrupted by exercise stress and suggest that LH pulsatility in women depends on energy availability.


2019 ◽  
Vol 29 (6) ◽  
pp. 682-689 ◽  
Author(s):  
Nura Alwan ◽  
Samantha L. Moss ◽  
Kirsty J. Elliott-Sale ◽  
Ian G. Davies ◽  
Kevin Enright

Physique competitions are events in which aesthetic appearance and posing ability are valued above physical performance. Female physique athletes are required to possess high lean body mass and extremely low fat mass in competition. As such, extended periods of reduced energy intake and intensive training regimens are used with acute weight loss practices at the end of the precompetition phase. This represents an increased risk for chronic low energy availability and associated symptoms of relative energy deficiency in sport, compromising both psychological and physiological health. Available literature suggests that a large proportion of female physique athletes report menstrual irregularities (e.g., amenorrhea and oligomenorrhea), which are unlikely to normalize immediately postcompetition. Furthermore, the tendency to reduce intakes of numerous essential micronutrients is prominent among those using restrictive eating patterns. Following competition, reduced resting metabolic rate, and hyperphagia, is also a concern for these female athletes, which can result in frequent weight cycling, distorted body image, and disordered eating/eating disorders. Overall, female physique athletes are an understudied population, and the need for more robust studies to detect low energy availability and associated health effects is warranted. This narrative review aims to define the natural female physique athlete, explore some of the physiological and psychological implications of weight management practices experienced by female physique athletes, and propose future research directions.


2020 ◽  
Vol 55 (1) ◽  
pp. 38-45
Author(s):  
Margot Anne Rogers ◽  
Renee Newcomer Appaneal ◽  
David Hughes ◽  
Nicole Vlahovich ◽  
Gordon Waddington ◽  
...  

ObjectivesAthlete health, training continuity and performance can be impeded as a result of Relative Energy Deficiency in Sport (RED-S). Here we report the point prevalence of symptoms described by the RED-S model in a mixed-sport cohort of Australian female athletes.MethodsElite and pre-elite female athletes (n=112) from eight sports completed validated questionnaires and underwent clinical assessment to assess the point prevalence of RED-S symptoms. Questionnaires included the Depression, Anxiety and Stress Questionnaire (DASS-21), Generalized Anxiety Disorder (GAD-7), Center for Epidemiological Studies Depression Scale (CES-D), SCOFF questionnaire for disordered eating, Low Energy Availability in Females Questionnaire (LEAF-Q), and a custom questionnaire on injury and illness. Clinical assessment comprised resting metabolic rate (RMR) assessment, dual-energy X-ray absorptiometry-derived body composition and bone mineral density, venous and capillary blood samples, and the Mini International Neuropsychiatric Interview (MINI 7.0.2). Descriptive prevalence statistics are presented.ResultsAlmost all (80%) participants (age 19 (range 15–32) years; mass 69.5±10.3 kg; body fat 23.1%±5.0%) demonstrated at least one symptom consistent with RED-S, with 37% exhibiting between two and three symptoms. One participant demonstrated five symptoms. Impaired function of the immunological (28%, n=27), haematological (31%, n=33) and gastrointestinal (47%, n=51) systems were most prevalent. A moderate to high (11%–55%) prevalence of risk of low energy availability was identified via RMR and LEAF-Q, and identified mental illnesses were prevalent in one-third of the assessed cohort.ConclusionSymptoms described by the RED-S model were prevalent in this cohort, supporting the need for improved awareness, monitoring and management of these symptoms in this population.


Sign in / Sign up

Export Citation Format

Share Document