Dynamic analysis of a suspended pump in a vertical well connected to the ocean

1983 ◽  
Vol 10 (3) ◽  
pp. 481-491 ◽  
Author(s):  
Bassem M. Eid ◽  
Sheldon H. Zemell

In the design of a salt-water intake system which is connected to the ocean, a numerical model is developed to simulate the hydraulic and structural dynamic responses to the ocean's wave action. On the basis of available data, the design wave height is determined from the condition for breaking. For such a complex system, wherein several natural periods are contributing to the total response, a range of wave periods is considered. The standing wave system resulting from the reflection of a progressive wave train from a vertical wall (clapotis) is modelled and the hydrodynamic response of the system is computed. To limit water level fluctuations in the well, a strong damping of the water column is provided by constricting the flow through an orifice plate installed at the bottom of the pump well. The hydrodynamic force on the suspended pumps due to nearby submerged turbulent jet flow is described. A damped single-degree-of-freedom oscillator is employed to represent the structural dynamics of the pumps. Extensive experiments are required to supplement this work in order to describe the complex system fully. Keywords: dynamic analysis, salt-water intake, waves, hydrodynamic force, suspended pump, submerged jet, oscillator.

2020 ◽  
Vol 10 (5) ◽  
pp. 1815
Author(s):  
Mustafasanie M. Yussof ◽  
Jordan Halomoan Silalahi ◽  
Mohd Khairul Kamarudin ◽  
Pei-Shan Chen ◽  
Gerard A. R. Parke

This research is aimed at investigating the dynamic behaviour of, and to analyse the dynamic response and dynamic performance of steel frames strengthened with welded haunches subjected to a typical hydrocarbon blast loading. The structural dynamic analysis was carried out incorporating the selected blast load, the validated 3D model of the structures with different welded haunch configurations, steel dynamic material properties, and non-linear dynamic analysis of multiple degree of freedom (MDOF) structural systems. The dynamic responses and effectiveness of the reinforced connections were examined using ABAQUS finite element software. Results showed that the presence of the welded haunch reinforcement decreased the maximum frame ductility ratio. Based on the evaluation of the results, the haunch reinforcements strengthened the selected steel frame and improved the dynamic performance compared to the frame with unreinforced connections under blast loading, and the biggest haunch configuration is the “best” type.


2020 ◽  
Vol 68 (1) ◽  
pp. 48-58
Author(s):  
Chao Liu ◽  
Zongde Fang ◽  
Fang Guo ◽  
Long Xiang ◽  
Yabin Guan ◽  
...  

Presented in this study is investigation of dynamic behavior of a helical gear reduction by experimental and numerical methods. A closed-loop test rig is designed to measure vibrations of the example system, and the basic principle as well as relevant signal processing method is introduced. A hybrid user-defined element model is established to predict relative vibration acceleration at the gear mesh in a direction normal to contact surfaces. The other two numerical models are also constructed by lumped mass method and contact FEM to compare with the previous model in terms of dynamic responses of the system. First, the experiment data demonstrate that the loaded transmission error calculated by LTCA method is generally acceptable and that the assumption ignoring the tooth backlash is valid under the conditions of large loads. Second, under the common operating conditions, the system vibrations obtained by the experimental and numerical methods primarily occur at the first fourth-order meshing frequencies and that the maximum vibration amplitude, for each method, appears on the fourth-order meshing frequency. Moreover, root-mean-square (RMS) value of the acceleration increases with the increasing loads. Finally, according to the comparison of the simulation results, the variation tendencies of the RMS value along with input rotational speed agree well and that the frequencies where the resonances occur keep coincident generally. With summaries of merit and demerit, application of each numerical method is suggested for dynamic analysis of cylindrical gear system, which aids designers for desirable dynamic behavior of the system and better solutions to engineering problems.


2021 ◽  
pp. 136943322110339
Author(s):  
Jian Guo ◽  
Changliang Xiao ◽  
Jiantao Li

A hill with a lattice transmission tower presents complex wind field characteristics. The commonly used computational fluid dynamics (CFD) simulations are difficult to analyze the wind resistance and dynamic responses of the transmission tower due to structural complexity. In this study, wind tunnel tests and numerical simulations are conducted to analyze the wind field of the hill and the dynamic responses of the transmission tower built on it. The hill models with different slopes are investigated by wind tunnel tests to measure the wind field characteristics, such as mean speed and turbulence intensity. The study shows that the existence of a transmission tower reduces the wind speed on the leeward slope significantly but has little effect on the windward slope. To study the dynamic behavior of the transmission tower, a hybrid analysis procedure is used by introducing the measured experimental wind information to the finite element tower model established using ANSYS. The effects of hill slope on the maximum displacement response of the tower are studied. The results show that the maximum value of the response is the largest when the hill slope is 25° compared to those when hill slope is 15° and 35°. The results extend the knowledge concerning wind tunnel tests on hills of different terrain and provide a comprehensive understanding of the interactive effects between the hill and existing transmission tower regarding to the wind field characteristics and structural dynamic responses.


Author(s):  
Wenhua Wang ◽  
Zhen Gao ◽  
Xin Li ◽  
Torgeir Moan ◽  
Bin Wang

In the last decade the wind energy industry has developed rapidly in China, especially offshore. For a water depth less than 20m, monopile and multi-pile substructures (tripod, pentapod) are applied widely in offshore wind farms. Some wind farms in China are located in high seismicity regions, thus, the earthquake load may become the dominant load for offshore wind turbines. This paper deals with the seismic behavior of an offshore wind turbine (OWT) consisting of the NREL 5MW baseline wind turbine, a pentapod substructure and a pile foundation of a real offshore wind turbine in China. A test model of the OWT is designed based on the hydro-elastic similarity. Test cases of different load combinations are performed with the environmental conditions generated by the Joint Earthquake, Wave and Current Simulation System and the Simple Wind Field Generation System at Dalian University of Technology, China, in order to investigate the structural dynamic responses under different load conditions. In the tests, a circular disk is used to model the rotor-nacelle system, and a force gauge is fixed at the center of the disk to measure the wind forces during the tests. A series of accelerometers are arranged along the model tower and the pentapod piles, and strain gauges glued on the substructure members are intended to measure the structural dynamic responses. A finite element model of the complete wind turbine is also established in order to compare the theoretical results with the test data. The hydro-elastic similarity is validated based on the comparison of the measured dynamic characteristics and the results of the prototype modal analysis. The numerical results agree well with the experimental data. Based on the comparisons of the results, the effect of the wind and sea loads on the structural responses subjected to seismic is demonstrated, especially the influence on the global response of the structure. It is seen that the effect of the combined seismic, wind, wave and current load conditions can not be simply superimposed. Hence the interaction effect in the seismic analysis should be considered when the wind, wave and current loads have a non-negligible effect.


2012 ◽  
Author(s):  
Seok-Cheol Hwang ◽  
Kwon-Hee Lee

Sign in / Sign up

Export Citation Format

Share Document