Composite cold-formed steel–concrete columns

1987 ◽  
Vol 14 (3) ◽  
pp. 295-301 ◽  
Author(s):  
George Abdel-Sayed ◽  
Kwok-Cheung Chung

A new system of composite columns is developed using lipped cold-formed steel channels with embossments and cast-in-place concrete. The combined action of the embossments and the channel's lips leads to very good bond between the steel and the concrete. It has been found that by replacing the standard longitudinal reinforcing bars by cold-formed steel sections of equal area, the structural performance of the columns remains almost unchanged, while considerable savings are achieved in time and material of construction. The present paper outlines the main characteristics of the proposed columns and provides an approach for their analysis and design, which is verified experimentally. Key words: columns, composite structures, concrete (reinforced), construction, cold-formed steel.

2005 ◽  
Vol 8 (3) ◽  
pp. 231-245 ◽  
Author(s):  
K. F. Chung

This paper presents a number of experimental and theoretical investigations into the structural behaviour of cold-formed steel structures with bolted connections. Firstly, the basic deformation characteristics of bolted fastenings between cold-formed steel strips in lap shear tests is described, and advanced finite element modelling with solid elements as well as contact elements is carried out for comparison. Secondly, the structural behaviour of lapped Z sections with bolted moment connections is reported, and both analytical and numerical predictions on strength and stiffness of lapped Z sections are presented. Finally, the structural performance of double span lapped Z purlins is investigated numerically where the effects of lapped Z sections over internal supports on the internal force distributions along the purlin members are examined. The description is intended to provide both analysis and design methods as well as understandings to structural engineers, enabling them to design and build cold-formed steel structures rationally with improved structural performance.


2015 ◽  
Vol 74 (4) ◽  
Author(s):  
M. M. Lawan ◽  
M. M. Tahir ◽  
S. P. Ngian ◽  
A. Sulaiman

Cold-formed steel (CFS) sections are lightweight materials where their high structural performance is very suitable for building construction. Conventionally, they are used as purlins and side rails in the building envelopes of the industrial buildings. Recent research development on cold-formed steel has shown that the usage is expanding in the present era of building constructions and infrastructural applications. However, the study on cold-formed steel as composite structures is yet to be explored in the literature. Therefore, this review paper has presented research works done which investigate the structural improvement of cold-formed steel as composite structures. The use of cold-formed steel with self- compacting concrete (CFS-SCC) which can be considered as a unique composite entity is also presented. The significance of using the CFS-SCC as composite is also highlighted. The results of various researchers indicated that the robustness of the product (cold-formed steel-concrete) was significantly improved for both the shear resistance and the flexural resistance. The investigation on the behaviour of CFS-SCC designed as composite is a key issue where the innovative construction method and significant advantages are highlighted in this paper. The review papers have proven that the use of cold-formed steel as composite has enhanced the application of the cold-formed steel as competitive material for construction.


2015 ◽  
Vol 4 (1) ◽  
pp. 205
Author(s):  
Amir Parviz Khosravi Amiri

The main objective of this study is evaluating the seismic behavior of composite columns in MRFs subject to dynamic loads.The design Codes of composite structures contain different views in some cases and therefore conservative provisions, because of lack of enough information about the behavior of these structures. The base shear and moment of structures in non-linear state can be considered as criteria for the potential of a lateral-force-resisting system to dissipate the seismic energy.Lower values of non-linear seismic base reactions indicate better efficacy of the system. In this study the performance of the MRFs with composite columns has been evaluated using 8-story structural models, considering the base reactions obtained from the non-linear analysis. Analytical modeling has been performed based on the AISC Code. The results show good performance of composite sections under the seismic loads. Also, a comparison between two types of composite sections, the full and half-embedded steel sections in concrete, has been made.


1984 ◽  
Vol 11 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Robert Loov

Load tests were carried out on 36 stub column samples of cold-formed steel studs having 38.1 mm wide × 44.5 mm long holes punched through their webs, steel thicknesses of 1.21–2.01 mm, and overall section depths of 63–204 mm. Based on these tests a best-fit equation for the effective width of the unstiffened portion of the web beside the holes has been developed. Suggested design equations have been proposed. The test results support the present equation for the average yield stress [Formula: see text] in Canadian Standards Association Standard S136-1974 but the present code equations for unstiffened plates are unduly conservative when applied to the design of the web adjacent to openings of the size considered.


2020 ◽  
Vol 20 (3) ◽  
pp. 75-80
Author(s):  
Eunmi Ryu ◽  
Heesun Kim ◽  
Yeongsoo Shin

Most of the columns in actual fire conditions are heated on partial faces rather than all four sides due to the floor plan, which results in asymmetric behaviors of columns. The asymmetric behaviors of fire-damaged columns may cause more vulnerability to the structural performance. In this study, temperature distribution and residual strength of reinforced concrete columns exposed to fire were investigated according to various heated areas. To achieve the objective, columns were heated for 2 h according to ISO-834 standard time-temperature curve and subsequently tested under the axial loading after a week. The test results show that the residual strength of the fire-damaged columns decreased as the heated area increased, and the residual strength reduced additionally due to asymmetric heating.


Sign in / Sign up

Export Citation Format

Share Document