Limit states design of concrete slender columns

1987 ◽  
Vol 14 (4) ◽  
pp. 439-446 ◽  
Author(s):  
S. A. Mirza ◽  
J. G. MacGregor

The limit states design requires the use of load factors and resistance factors to consider the probability of overloading, understrength, or both. Research has been underway in Canada to introduce the probability-based limit states design for concrete structures. Based on the current knowledge of building load statistics, the National Building Code of Canada adopted a set of load factors which are different from those used in the Canadian Standards Association Standard A23.3-M77. This required the development of resistance factors that would be compatible with the load factors specified in the National Building Code of Canada. The research reported herein discusses the development of such resistance factors for use in computing the moment magnification of concrete slender columns. Key words: building codes, load factors, loads (forces), moment magnification, reinforced concrete, resistance, resistance factors, slender columns, stability, structural design.

1984 ◽  
Vol 21 (1) ◽  
pp. 1-7 ◽  
Author(s):  
G. G. Meyerhof

This paper outlines the ultimate and serviceability limit states in geotechnical engineering analyses. The magnitude of customary total and suggested partial safety factors in earthworks, earth retaining structures, excavations, and foundations is discussed. On the basis of comparisons between these safety factors and using recommended load factors on various types of loading, including water pressures, common resistance factors on cohesion and friction of soils and performance factors can be established together with some additional modification factors for particular stability conditions. The serviceability limit states of foundations and structures are briefly discussed.


1993 ◽  
Vol 30 (3) ◽  
pp. 515-525 ◽  
Author(s):  
K. Been ◽  
J.I. Clark ◽  
W.R. Livingstone

In June 1992, the Canadian Standards Association (CSA) published a code for the design, construction, and installation of fixed offshore structures. This code is relatively advanced in its application of limit states design to offshore structures. The part dealing with foundations is written as a performance standard. It does not specify resistance factors (or safety factors) to achieve the target reliability of the structure. Although limit states design is common practice among geotechnical engineers, the application of resistance factors is a problem. This paper describes some of the studies and conclusions reached by the Technical Committee in the development of the CSA foundations standard. As a first step, resistance factors were developed by calibration to conventional total factors of safety for the failure mechanisms considered. This approach has severe limitations. In particular, the applicability of safety factors developed for onshore practice or other offshore areas to the ice-dominated environment of Canadian offshore regions is questionable. In addition, many offshore structure designs include consideration of dynamic loading and scour or erosion problems that cannot be satisfactorily dealt with using factors of safety. An example of the problem of applying separate load and resistance factors for a bearing-capacity problem is given to show that load and resistance are not independent of each other. Because of the problems with development of resistance factors, the CSA foundations standard dictates that offshore structure designs include a risk analysis of the foundation system. A simple form of such an analysis for a caisson-retained sand structure is included in the paper. Key words : offshore structures, foundations, standard, safety, limit states design.


1987 ◽  
Vol 14 (4) ◽  
pp. 447-454 ◽  
Author(s):  
J. H. Rainer

A derivation of force reduction factors for the seismic provisions of the National Building Code of Canada (NBCC), 1985, is presented. This includes the following: classification of seismic actions, applicable limit states, change in load factor, derivation of force reduction factors, and classification of structural configurations. Quantitative comparisons are made between the derived force reduction factors and the response modification factors of the Applied Technology Council and good agreement was found. It is suggested that seismic requirements should be considered as accidental actions with a load factor αQ = 1.0. These results can form the basis for possible modifications to the 1985 NBCC seismic provisions. Key words: earthquake resistant structures, building code, loads, load factors.


1996 ◽  
Vol 33 (6) ◽  
pp. 984-1007 ◽  
Author(s):  
Dennis E Becker

The geotechnical engineering profession in Canada is in the process of evaluating limit states design (LSD) for its incorporation into codes of practice for foundation engineering to provide a consistent design approach between geotechnical and structural engineers. This paper describes the work carried out for the initial development of LSD for foundations in the National Building Code of Canada. A load and resistance factor design approach, based on a factored overall geotechnical resistance, is used. The resistance factors for the ultimate limit states of bearing capacity and sliding of shallow and deep foundations are derived from a direct calibration with working stress design (WSD) and from a reliability analysis. The resistance factors derived from both approaches are consistent with each other and provide a reasonably constant reliability index of about 3.0 to 3.5. A relationship is presented that relates the reliability index to a global factor of safety and resistance factor. Design examples are provided that show that the proposed LSD produces designs that are comparable with those produced by traditional WSD. The importance of serviceability limits states is discussed, and the items that require further study and research work to refine code calibration are identified. Key words: limit states design, reliability index, code calibration, resistance factors, foundations, ultimate limit states.


1976 ◽  
Vol 3 (4) ◽  
pp. 484-513 ◽  
Author(s):  
J. G. MacGregor

This state-of-art paper reviews the concept of limit states design. Following a brief review of statistical definitions the sources of variability in reinforced concrete structures are reviewed. Methods of defining structural safety are reviewed. Following a derivation of the procedures used to compute load and [Formula: see text] factors, a series of [Formula: see text] factors compatible with the 1975 National Building Code of Canada load factors are computed. With the exception of the value for shear the new [Formula: see text] factors are lower than the current American Concrete Institute and Canadian Standards Association values by about the amount of the ratio of load factors in National Building Code of Canada and American Concrete Institute. The computed [Formula: see text] for shear is considerably lower than the corresponding value from the American Concrete Institute Code. An Appendix traces the development of the American Concrete Institute load and [Formula: see text] factors.


2003 ◽  
Vol 30 (2) ◽  
pp. 440-448 ◽  
Author(s):  
F M Bartlett ◽  
H P Hong ◽  
W Zhou

The 2005 edition of the National Building Code of Canada (NBCC) will adopt a companion-action format for load combinations and specify wind and snow loads based on their 50 year return period values. This paper presents the calibration of these factors, based on statistics for dead load, live load due to use and occupancy, snow load, and wind load, which are summarized in a companion paper. A target reliability index of approximately 3 for a design life of 50 years was adopted for consistency with the 1995 NBCC. The load combinations and load factors for strength and stability checks recommended for the 2005 NBCC were based on preliminary values from reliability analysis that were subsequently revised slightly to address major inconsistencies with past practice. The recommended load combinations and factors generally give factored load effects similar to those in the 1995 NBCC, but are up to 10% more severe for the combination of dead load plus snow load and are generally less severe for the combination of dead load, snow load, and live load due to use and occupancy. Load factors less than one are recommended for checking serviceability limit states involving specified snow and wind loads. Importance factors for various classifications of structure are also presented. Revisions to the commentaries of the NBCC are recommended that will provide guidance on dead load allowances for architectural and mechanical superimposed dead loads and cast-in-place cover slabs and toppings.Key words: buildings, code calibration, companion action, dead loads, live loads, load combinations, load factors, reliability, safety, snow loads, wind loads.


2021 ◽  
Vol 8 (1) ◽  
pp. 89-95
Author(s):  
Micol Palmieri ◽  
Ilaria Giannetti ◽  
Andrea Micheletti

Abstract This is a conceptual work about the form-finding of a hybrid tensegrity structure. The structure was obtained from the combination of arch-supported membrane systems and diamond-type tensegrity systems. By combining these two types of structures, the resulting system features the “tensile-integrity” property of cables and membrane together with what we call “floating-bending” of the arches, a term which is intended to recall the words “floating-compression” introduced by Kenneth Snelson, the father of tensegrities. Two approaches in the form-finding calculations were followed, the Matlab implementation of a simple model comprising standard constant-stress membrane/cable elements together with the so-called stick-and-spring elements for the arches, and the analysis with the commercial software WinTess, used in conjunction with Rhino and Grasshopper. The case study of a T3 floating-bending tensile-integrity structure was explored, a structure that features a much larger enclosed volume in comparison to conventional tensegrity prisms. The structural design of an outdoor pavilion of 6 m in height was carried out considering ultimate and service limit states. This study shows that floating-bending structures are feasible, opening the way to the introduction of suitable analysis and optimization procedures for this type of structures.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 617
Author(s):  
Silvia Guillén ◽  
Laura Nadal ◽  
Ignacio Álvarez ◽  
Pilar Mañas ◽  
Guillermo Cebrián

The success of Salmonella as a foodborne pathogen can probably be attributed to two major features: its remarkable genetic diversity and its extraordinary ability to adapt. Salmonella cells can survive in harsh environments, successfully compete for nutrients, and cause disease once inside the host. Furthermore, they are capable of rapidly reprogramming their metabolism, evolving in a short time from a stress-resistance mode to a growth or virulent mode, or even to express stress resistance and virulence factors at the same time if needed, thanks to a complex and fine-tuned regulatory network. It is nevertheless generally acknowledged that the development of stress resistance usually has a fitness cost for bacterial cells and that induction of stress resistance responses to certain agents can trigger changes in Salmonella virulence. In this review, we summarize and discuss current knowledge concerning the effects that the development of resistance responses to stress conditions encountered in food and food processing environments (including acid, osmotic and oxidative stress, starvation, modified atmospheres, detergents and disinfectants, chilling, heat, and non-thermal technologies) exerts on different aspects of the physiology of non-typhoidal Salmonellae, with special emphasis on virulence and growth fitness.


2016 ◽  
Vol 691 ◽  
pp. 51-60 ◽  
Author(s):  
Martin Krizma ◽  
Lubomir Bolha

The issue of strengthening the damaged linear reinforced concrete elements have been engaged since 2008. We focused on the analysis of resistance and the characteristics of limit states of serviceability in the damaged and subsequently strengthened elements at a short-term loading. In the introduction phase, the strengthening of the elements was carried out with the following procedures – installation of an overlayer on the coupling board or a combination of the board and use of glass – fiber fabric (GFRP). The strengthening was also affected by the type of contact (reinforced/non-reinforced) – the deformed element/coupling board and its effect on resistance, type of deformation and serviceability. In the non-reinforced contact, we applied some of the types of adjustments to the surface of the strengthened element. At the moment, we are dealing with the effects of time and repeated load on the strengthened elements. The results correspond to the reinforced contact. The values are compared with the short-term results of the strengthened beams and with the long-term results of the beams prepared for strengthening.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Maja Dorota Wojciechowska

Purpose The purpose of the paper is to present the latest scholarly trends in the field of social capital in libraries, to review research concepts published by LIS professionals and to suggest further research possibilities in this area. Design/methodology/approach This paper presents a review and critical analysis of literature associated with research on social capital in libraries to highlight its importance for the development of LIS and its impact on the functioning of environments linked with various types of libraries. The goal of literature analysis was to determine the current condition of research on social capital in libraries. The main trends were identified and the need for further qualitative analyses, which are missing at the moment, was confirmed. Findings It was determined that, so far, LIS professionals have focussed mainly on the role of municipal libraries in developing social capital, the problem of building trust, especially in immigrant circles and the impact of libraries on promoting a civil society. Academic libraries, rural libraries, organisational capital in libraries and individual social capital of librarians were a much less frequent subject of research. The role of libraries in developing social capital in educational (primary and secondary education) and professional (non-university professionals) circles is practically non-existent in research, and it will require in-depth studies and analyses in the coming years. Originality/value This paper constitutes a synthetic review of the latest research concepts concerning social capital in libraries. It identifies the most important research trends and areas that so far have not been explored and suggests research methods to help LIS professionals design future research in this area more effectively.


Sign in / Sign up

Export Citation Format

Share Document