Mechanical properties and freezing and thawing durability of concrete incorporating a ground granulated blast-furnace slag

1989 ◽  
Vol 16 (2) ◽  
pp. 140-156 ◽  
Author(s):  
V. M. Malhotra

This paper gives the results of laboratory invstigations to determine the mechanical properties and freezing and thawing durability of concrete incorporating a granulated blast-furnace slag from a Canadian source. A series of fifteen 0.06 m3 concrete mixtures were made with water-to-(cement + slag) ratios (W/(C + S)) ranging from 0.70 to 0.45. The percentage of slag used as a partial replacement for normal portland cement ranged from 0 to 100% by weight. All mixtures were air entrained. A number of test cylinders and prisms were cast for determining the mechanical properties and freezing and thawing resistance of concrete.The test results indicate that the ground granulated blast-furnace slag can be used with advantage as a partial replacement for portland cement in concrete at 50% or lower replacement levels, especially at W/(C + S) of the order of 0.55 or lower. At 28 days, irrespective of the W/(C + S) and regardless of the percentage replacement of the cement by the slag investigated, the compressive strength of the concrete incorporating slag is comparable with that of the concrete made with normal portland cement. At all W/(C + S) and at all percentages of replacement, the flexural strength of the slag concrete is comparable with or greater than the corresponding strength of the control concrete. Durability of air-entrained slag concrete exposed to repeated cycles of freezing and thawing is satisfactory as evidenced by the high durability factors achieved. Key words: granulated slag, bleeding, time of setting, concrete, strength, freezing and thawing, shrinkage, creep, abrasion.

2015 ◽  
Vol 244 ◽  
pp. 88-93
Author(s):  
Martina Kovalcikova ◽  
Adriana Eštoková ◽  
Alena Luptáková ◽  
Julius Strigac

The use of separately ground blast-furnace slag, added at the mixer as a replacement for a portion of the Portland cement, has gained increasing acceptance in recent years. The effects of partial replacement of Portland cement with ground slag on the properties of hardened concrete have been extensively investigated and reported. Both laboratory testing and field experience have shown that properly proportioned slag-Portland cement concretes have the improved resistance to sulfates and seawater compared to regular Portland mixes. The paper is focused on the effects of sulfur-oxidizing bacteria Acidithiobacillus thiooxidans on concrete mixtures with addition of ground granulated blast furnace slag compared to mixture without any additives. The concrete specimens with 65 and 75 % wt. addition of antimicrobial activated granulated blast furnace slag as durability increasing factor as well as without any addition were investigated in laboratory during the nine 7-day cycles. A laboratory study was conducted to comparison the performance of concrete samples in terms of a concrete deterioration influenced by the leaching of calcium and silicon compounds from the cement matrix. The changes in the elemental concentrations of calcium and silicon ions in leachates were measured by using X – ray fluorescence method. The pH values were measured and evaluated after each cycle. The concrete specimen with 65 % wt. addition of antimicrobial activated granulated blast furnace slag was found to have the best leaching performance of calcium ions than other samples. The final concentration of Si ions in leachate of concrete specimen with 75 % wt. addition of antimicrobial activated granulated blast furnace slag affected with bacteria Acidithiobacillus thiooxidans (4.614 mg/g of concrete sample) was observed to be 1.263 times lower than reference sample without any additives. The higher resistance of concrete samples with the addition of antimicrobial activated granulated blast furnace slag to the aggressive environment was confirmed.


2020 ◽  
Vol 8 (6) ◽  
pp. 1385-1388

In the present generation the construction activity is rapidly increasing as a result the usage of cement is growing more and leads to environmental hazards. This study deals with the mechanical properties of partial replacement of cement by GGBS and Fly-Ash in M40 grade concrete. Cement were replaced as partially in the form of 5%,10%,15% and 20%. As per IS 456:2000 [1] the tests were conducted on 3,7 and 28th days after curing condition. This study proves that the possible replacement to cement by GGBS is 10% and fly ash 15% used in the concrete, which helps in minimizing the consumption of cement and environmental problems also


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3448
Author(s):  
Chenhui Jiang ◽  
Aiying Wang ◽  
Xufan Bao ◽  
Zefeng Chen ◽  
Tongyuan Ni ◽  
...  

This paper presents an experimental investigation on geopolymer coatings (GPC) in terms of surface protection of civil structures. The GPC mixtures were prepared with a quadruple precursor simultaneously containing fly ash (FA), ground granulated blast-furnace slag (GBFS), metakaolin (MK), and Portland cement (OPC). Setting time, compressive along with adhesive strength and permeability, were tested and interpreted from a perspective of potential applications. The preferred GPC with favorable setting time (not shorter than 120 min) and desirable compressive strength (not lower than 35 MPa) was selected from 85 mixture formulations. The results indicate that balancing strength and setting behavior is viable with the aid of the multi-componential precursor and the mixture design based on total molar ratios of key oxides or chemical elements. Adhesive strength of the optimized GPC mixtures was ranged from 1.5 to 3.4 MPa. The induced charge passed based on a rapid test of coated concrete specimens with the preferred GPC was 30% lower than that of the uncoated ones. Setting time of GPC was positively correlated with η[Si/(Na+Al)]. An abrupt increase of setting time occurred when the molar ratio was greater than 1.1. Compressive strength of GPC was positively affected by mass contents of ground granulated blast furnace slag, metakaolin and ordinary Portland cement, and was negatively affected by mass content of fly ash, respectively. Sustained seawater immersion impaired the strength of GPC to a negligible extent. Overall, GPC potentially serves a double purpose of satisfying the usage requirements and achieving a cleaner future.


Sign in / Sign up

Export Citation Format

Share Document