Highway cost allocation methodologies

1992 ◽  
Vol 19 (4) ◽  
pp. 680-687
Author(s):  
Alemayehu Ambo ◽  
F. R. Wilson ◽  
A. M. Sevens

Four methodologies of life-cycle highway cost allocation were examined using the province of New Brunswick, Canada, as a case study. The first two methodologies were reported by Wong and Markov. The third methodology was suggested by Rilett et al. The fourth methodology was introduced as part of the research project. It was in line with the procedures practised in public accounts for the construction and maintenance of roads on a continuing basis. The four methodologies were tested using the same data base pertaining to vehicle types; traffic measures (independent vehicle, passenger car equivalents, and equivalent standard axle loads); and costs of construction, maintenance, and rehabilitation. These data were applicable to a major two-lane highway in the study area. Six sites were selected for the case study. An analysis period of 60 years, three traffic growth scenarios, and three pavement design periods were considered. Eleven types of vehicles, comprising passenger cars, light trucks and vans, trucks, buses, and recreational vehicles, were used in the analysis. The assessment of the methodologies resulted in the recommendation of, and the suggestions for, the costing of highways. Key words: equivalent standard axle loads, passenger car equivalents, vehicle count, life-cycle costing, unit costs, accumulated costs, annual costs, discounted costs.

2019 ◽  
Vol 26 (4) ◽  
pp. 69-74
Author(s):  
Wojciech Gis ◽  
Jerzy Waśkiewicz ◽  
Maciej Menes ◽  
Maciej Gis

AbstractThe article presents political and legal aspects regarding the recommendation for the development of hydrogen technology in the economy and in transport. The development of electric cars with hydrogen-powered fuel cells, which took place in recent years in the world, has been outlined. The principles of calculation of average vehicle operating costs applicable in the transport economics are discussed. The estimated average unit operating costs of a statistical passenger car using conventional energy carriers, estimated in the studies of the Motor Transport Institute are quoted. The assumptions and results of the estimation of the average cost per 1 vehicle-kilometre of the electric passenger car’s mileage (BEV) have been presented, as well as the assumptions and results of the estimation of the average unit operating costs of a hydrogen powered passenger car (FCEV). The average unit costs of the mileage of these vehicles have been compared. The predictions regarding the future changes in the average prices of FCEV vehicles have been cited and the average unit costs of operating electric cars with fuel cells by the 2050 have been estimated. The project of administrative support for the development of low-emission transport in Poland was indicated.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 76
Author(s):  
Małgorzata Mrozik ◽  
Agnieszka Merkisz-Guranowska

The environmental safety of a car is currently one of the most important indicators of vehicle competitiveness and quality in the consumer market. Currently, assessment of the ecological properties of vehicles is based on various criteria. In the case of combustion-powered cars, most attention is usually paid to the values characterizing their use, and in terms of environmental assessment, pollutant emissions, and operational fuel consumption are key factors. The current article considers the possibility of using the life cycle assessment (LCA) method to analyze the ecological properties of a passenger car during its operation. A simplified LCA method for vehicles, which, in strictly defined cases, can be used for the analysis of environmental impact and assessment of the energy analysis related to its operation, is presented. For this purpose, a vehicle life cycle model is developed. Data on the operation of 33 passenger cars from different manufacturers with similar operational characteristics, coming from different production periods, are analyzed in detail. The vehicle use model takes into account the environmental load due to fuel consumption and pollutant emissions from the internal combustion engine, as well as processes related to the maintenance of the car. The obtained results show that, from the point of view of a car’s impact on the environment throughout its life cycle, the phase of its operation plays the most important role. For the annual operation period, the results of the analysis lead to the conclusion that, in the assessment of energy inputs and related emissions throughout the life cycle of a passenger car, the mileage of the car, which is determined by both the periodicity of replacement of elements and materials subject to normal wear and the length of the adopted period, is of key importance. For the tested vehicles, both the energy input resulting from fuel consumption as well as CO2 and SO2 emissions constitute about 94% to 96% of the total input during the annual operation of the vehicle.


2020 ◽  
Vol 10 (22) ◽  
pp. 8182
Author(s):  
Marco Guerrieri

The main purpose of the research is to evaluate the crest vertical curves radii Rv, not considering a conventional value of the opposing vehicle height h2, but the average vehicle heights h2(m) and the value of the 15th percentile of the height distribution h2(15) of the passenger car population. The study only considered car models with more than 20,000 registered vehicles in Italy. One hundred and fifteen car models belonging to different brands were taken into consideration, for a total of over 9 million vehicles. For the statistical sample analyzed, the following vehicle heights were estimated: h2(m) = 1.48 m and h2(15) = 1.39 m. The deviations between the crest radii calculated with the Italian standard (h2 = 1.10 m), and those obtained for h2(m) = 1.48 m and h2(15) = 1.39 m are up to 12%. The differences ΔHv between the values of the visible vehicle body height Hv = Hv(t) calculated using, respectively, h2(15) = 1.39 m and h2(m) = 1.48 m are modest. The value h2(m) = 1.48 m could be adopted in order to reduce the highways construction costs. In fact, the research shows that the value h2 = 1.10 m is too conservative and leads to oversizing of the crest vertical curves. Therefore, it would be necessary to make an appropriate choice of h2 value in order to take into account the current heights of passenger cars.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Wei Zhou ◽  
Xuexun Guo ◽  
Xiaofei Pei ◽  
Chengcai Zhang ◽  
Jun Yan ◽  
...  

This paper is aimed at the problem that the subjective drivability evaluation by experienced test drivers is limited in time efficiency and is of high cost and poor repeatability. In this article, an intelligent drivability objective evaluation tool (I-DOET) for passenger cars with dual-clutch transmission (DCT) is developed and verified by real vehicle testing. First, the signal denoising method and its key parameters, which are suitable for drivability evaluation, are selected based on analytic hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS). Besides, combined with the uncertainty characteristics of subjective judgment, a mathematical model of the objective drivability evaluation FARODE (fuzzy AHP-RS based on objective drivability evaluation) is proposed by using the fuzzy comprehensive assessment (FCA) method. The AHP and rough set (RS) method are used to calculate the subjective and objective weights of the drivability evaluation, respectively, and the proportion of subjective and objective weights is determined by the principle of minimum relative information entropy. The fuzzy matrix is built by membership function of the evaluation indexes. Finally, the static gearshift condition focused on by the subjective evaluation experts is taken as a case study. The predictability score is obtained by combining the drivability quantization lever vector, comprehensive weight, and fuzzy matrix. The experimental results indicate that the proposed method is applicable for objective drivability evaluation in passenger cars with DCT.


2020 ◽  
Vol 12 (8) ◽  
pp. 3252 ◽  
Author(s):  
Marianna Lena Kambanou

Despite the existence of many life cycle costing (LCC) methods, LCC is not widely adopted and LCC methods are usually further tailored by practitioners. Moreover, little is known about how practising LCC improves life cycle management (LCM) especially if LCM is considered emergent and constantly developing. In a manufacturing company, LCC is prescriptively introduced to improve LCM. In the first part, this study describes how various methodological choices and other aspects of practising LCC were the outcome of contestation and conformity with extant practices and not only the best way to fulfil the LCC’s objective. This contestation can even influence if LCC is adopted. In the second part of the research, the implications of practising LCC on LCM are explored. LCC is found to positively propel LCM in many ways e.g., by spreading the life cycle idea, but may lead to a narrower understanding of the term life cycle resulting in the sustainability focus of LCM being overridden. The article also discusses how the findings can be taken into consideration when researchers develop LCC methods and when industry practises LCC.


Fuel ◽  
2019 ◽  
Vol 254 ◽  
pp. 115627 ◽  
Author(s):  
Marco Tomatis ◽  
Ashak Mahmud Parvez ◽  
Muhammad T. Afzal ◽  
Sannia Mareta ◽  
Tao Wu ◽  
...  

Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 230
Author(s):  
Hossein Omrany ◽  
Veronica Soebarto ◽  
Jian Zuo ◽  
Ruidong Chang

This paper aims to propose a comprehensive framework for a clear description of system boundary conditions in life cycle energy assessment (LCEA) analysis in order to promote the incorporation of embodied energy impacts into building energy-efficiency regulations (BEERs). The proposed framework was developed based on an extensive review of 66 studies representing 243 case studies in over 15 countries. The framework consists of six distinctive dimensions, i.e., temporal, physical, methodological, hypothetical, spatial, and functional. These dimensions encapsulate 15 components collectively. The proposed framework possesses two key characteristics; first, its application facilitates defining the conditions of a system boundary within a transparent context. This consequently leads to increasing reliability of obtained LCEA results for decision-making purposes since any particular conditions (e.g., truncation or assumption) considered in establishing the boundaries of a system under study can be revealed. Second, the use of a framework can also provide a meaningful basis for cross comparing cases within a global context. This characteristic can further result in identifying best practices for the design of buildings with low life cycle energy use performance. Furthermore, this paper applies the proposed framework to analyse the LCEA performance of a case study in Adelaide, Australia. Thereafter, the framework is utilised to cross compare the achieved LCEA results with a case study retrieved from literature in order to demonstrate the framework’s capacity for cross comparison. The results indicate the capability of the framework for maintaining transparency in establishing a system boundary in an LCEA analysis, as well as a standardised basis for cross comparing cases. This study also offers recommendations for policy makers in the building sector to incorporate embodied energy into BEERs.


Sign in / Sign up

Export Citation Format

Share Document