scholarly journals Environmental Assessment of the Vehicle Operation Process

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 76
Author(s):  
Małgorzata Mrozik ◽  
Agnieszka Merkisz-Guranowska

The environmental safety of a car is currently one of the most important indicators of vehicle competitiveness and quality in the consumer market. Currently, assessment of the ecological properties of vehicles is based on various criteria. In the case of combustion-powered cars, most attention is usually paid to the values characterizing their use, and in terms of environmental assessment, pollutant emissions, and operational fuel consumption are key factors. The current article considers the possibility of using the life cycle assessment (LCA) method to analyze the ecological properties of a passenger car during its operation. A simplified LCA method for vehicles, which, in strictly defined cases, can be used for the analysis of environmental impact and assessment of the energy analysis related to its operation, is presented. For this purpose, a vehicle life cycle model is developed. Data on the operation of 33 passenger cars from different manufacturers with similar operational characteristics, coming from different production periods, are analyzed in detail. The vehicle use model takes into account the environmental load due to fuel consumption and pollutant emissions from the internal combustion engine, as well as processes related to the maintenance of the car. The obtained results show that, from the point of view of a car’s impact on the environment throughout its life cycle, the phase of its operation plays the most important role. For the annual operation period, the results of the analysis lead to the conclusion that, in the assessment of energy inputs and related emissions throughout the life cycle of a passenger car, the mileage of the car, which is determined by both the periodicity of replacement of elements and materials subject to normal wear and the length of the adopted period, is of key importance. For the tested vehicles, both the energy input resulting from fuel consumption as well as CO2 and SO2 emissions constitute about 94% to 96% of the total input during the annual operation of the vehicle.

2020 ◽  
Vol 180 (1) ◽  
pp. 8-16
Author(s):  
Hubert FRIEDL ◽  
Günter Fraidl ◽  
Paul Kapus

In the future, the simultaneous reduction of pollutant and CO2 emissions will require significantly enhanced powertrain functionalities that cannot only be adequately represented by the ICE (internal combustion engine) alone. Both automated transmissions and especially powertrain electrification can help to meet efficiently those extended requirements. The extended functionalities are no longer applied exclusively with the ICE itself ("Fully Flexible Internal Combustion Engine"), but distributed across the entire powertrain ("Fully Flexible Powertrain"). In addition, the powertrain will be fully networked with the vehicle environment and thus will utilize all data that are useful for emission and consumption-optimized operation of the ICE. Combustion engine and electrification often complement each other in a synergetic way. This makes it extremely sensible for the combustion engine to evolve in future from a "single fighter" to a "team player". If one compares the requirements of such an ICE with the definition of Industry 4.0, then there are extensive correspondences. Thus, it seems quite opportune to call such a fully networked combustion engine designed to meet future needs as “Internal Combustion Engine 4.0 (ICE 4.0)”. This even more so, as such a name can also be derived from the history: e.g. ICE 1.0 describes the combustion engines of the first mass-produced vehicles, ICE 2.0 the combustion engines emission-optimized since the 1960s and ICE 3.0 the highly optimized "Fully Flexible Combustion Engine", which currently offers a high torque and performance potential combined with low fuel consumption and pollutant emissions. In addition to further improvements in fuel consumption, the "Combustion Engine 4.0" offers such a low level of pollutant emissions that can best be described as "Zero Impact Emission". This means that such future ICE´s will no longer have a negative impact on the imission situation in urban areas. With the e-fuels topic, the ICE also has the potential to become both CO2- and pollutant-neutral in the medium and long term. This means that the ICE – also in passenger cars – will continue to be an essential and necessary cornerstone for future powertrain portfolios for the next decades.


Author(s):  
Midhun Muraleedharan ◽  
◽  
Amitabh Das ◽  
Dr. Mohammad Rafiq Agrewale ◽  
Dr. K.C. Vora ◽  
...  

Hybridization is important to obtain the advantages of both the engine and motor as the sources of propulsion. This paper discusses the effect of hybridization of powertrain on vehicle performance. The Hybrid architectures are differentiated on the basis percentage of power dependency on the engine and motor. Passenger car with hybridization ratios of 20%, 40%, 60%, 80% and 100% are modelled on MATLAB/Simulink using the backward facing approach with the engine and motor specifications remaining constant. The hybridizations ratios and the energy consumption in terms of fuel and battery energy are obtained from the model and compared. Neural network is implemented to determine the fuel consumption. The outputs can be used by a system designer to determine a desirable hybridization factor based on the requirements dictated by the specific application.


2019 ◽  
Vol 113 ◽  
pp. 03020
Author(s):  
Vittorio Usai ◽  
Silvia Marelli ◽  
Avinash Renuke ◽  
Alberto Traverso

The reduction of CO2 and, more generally, GHG (Green House Gases) emissions imposed by the European Commission (EC) and the Environmental Protection Agency (EPA) for passenger cars has driven the automotive industry to develop technological solutions to limit exhaust emissions and fuel consumption, without compromising vehicle performance and drivability. In a mid-term scenario, hybrid powertrain and Internal Combustion Engine (ICE) downsizing represent the present trend in vehicle technology to reduce fuel consumption and CO2 emissions. Concerning downsizing concept, to maintain a reasonable power level in small engines, the application of turbocharging is mandatory for both Spark Ignition (SI) and Diesel engines. Following this aspect, the possibility to recover the residual energy of the exhaust gases is becoming more and more attractive, as demonstrated by several studies around the world. One method to recover exhaust gas energy from ICEs is the adoption of turbo-compounding technology to recover sensible energy left in the exhaust gas by-passed through the waste-gate valve. In the paper, an innovative option of advanced boosting system is investigated through a bladeless micro expander, promising attractive cost-competitiveness. The numerical activity was developed on the basis of experimental data measured on a waste-gated turbocharger for downsized SI automotive engines. To this aim, mass flow rate through the by-pass valve and the turbine impeller was measured for different waste-gate settings in steady-state conditions at the turbocharger test bench of the University of Genoa. The paper shows that significant electrical power can be harvested from the waste-gate gases, up to 94 % of compressor power, contributing to fuel consumption reduction.


2019 ◽  
Vol 11 (11) ◽  
pp. 3057
Author(s):  
Changyin Dong ◽  
Hao Wang ◽  
Quan Chen ◽  
Daiheng Ni ◽  
Ye Li

To support the rapid growth of demand in passengers and freight, separating trucks and passenger-cars is a potential solution to improve traffic efficiency and safety. The primary purpose of this paper is to comprehensively assess the multilane separate freeway at Huludao Toll Station in Liaoning Province, China. Based on the configuration and segmentation of the freeway near a toll station, a six-step guidance strategy is designed to adapt to the separate organization mode. Five conventional traffic scenarios are designed in the Vissim platform for comparative analysis between different guidance strategies. To investigate the vehicle-to-infrastructure (V2I) environment, a microscopic testbed is established with cooperative car-following and lane-changing models using the MATLAB platform. The numerical simulation results show that the guidance strategy significantly improves efficiency and safety, and also reduces emissions and fuel consumption. Meanwhile, pre-guidance before toll channels outperforms the scenario only applied with guidance measures after toll plaza. Compared to conventional conditions, the assessment of pollutant emissions and fuel consumption also embodies the superiority of the other five scenarios, especially in the sections of toll plaza and channels with the lowest efficiency and safety level. Generally, all indexes indicate that the cooperative V2I technology is the best alternative for multilane separate freeways.


2020 ◽  
Vol 12 (3) ◽  
pp. 1241 ◽  
Author(s):  
Eckard Helmers ◽  
Johannes Dietz ◽  
Martin Weiss

This study compares the environmental impacts of petrol, diesel, natural gas, and electric vehicles using a process-based attributional life cycle assessment (LCA) and the ReCiPe characterization method that captures 18 impact categories and the single score endpoints. Unlike common practice, we derive the cradle-to-grave inventories from an originally combustion engine VW Caddy that was disassembled and electrified in our laboratory, and its energy consumption was measured on the road. Ecoivent 2.2 and 3.0 emission inventories were contrasted exhibiting basically insignificant impact deviations. Ecoinvent 3.0 emission inventory for the diesel car was additionally updated with recent real-world close emission values and revealed strong increases over four midpoint impact categories, when matched with the standard Ecoinvent 3.0 emission inventory. Producing batteries with photovoltaic electricity instead of Chinese coal-based electricity decreases climate impacts of battery production by 69%. Break-even mileages for the electric VW Caddy to pass the combustion engine models under various conditions in terms of climate change impact ranged from 17,000 to 310,000 km. Break-even mileages, when contrasting the VW Caddy and a mini car (SMART), which was as well electrified, did not show systematic differences. Also, CO2-eq emissions in terms of passenger kilometers travelled (54–158 g CO2-eq/PKT) are fairly similar based on 1 person travelling in the mini car and 1.57 persons in the mid-sized car (VW Caddy). Additionally, under optimized conditions (battery production and use phase utilizing renewable electricity), the two electric cars can compete well in terms of CO2-eq emissions per passenger kilometer with other traffic modes (diesel bus, coach, trains) over lifetime. Only electric buses were found to have lower life cycle carbon emissions (27–52 g CO2-eq/PKT) than the two electric passenger cars.


Author(s):  
Hanna Sara ◽  
David Chalet ◽  
Mickaël Cormerais ◽  
Jean-François Hetet

Since the main interest worldwide of green environment companies is to reduce pollutant emissions, the automotive industry is aiming to improve engine efficiency in order to reduce fuel consumption. Recently, studies have been shifted from upgrading the engine to the auxiliary systems attached to it. Thermal management is one of the successful fields that has shown promise in minimizing fuel consumption and reducing pollutant emissions. Throughout this work, a four-cylinder turbocharged diesel engine model was developed on GT-Power. Also, a thermal code has been developed in parallel on GT-Suite, in which the different parts of the coolant and lubricant circuits were modeled and calibrated to have the best agreement with the temperature profile of the two fluids in the system. Once the model was verified, hot coolant storage, a thermal management strategy, was applied to the system to assess the fuel consumption gain. The storage tank was located downstream the thermostat and upstream the radiator with three valves to control the coolant flow. The place was chosen to avoid negative impact on the cold start-up of the engine when the tank is at the ambient temperature. This strategy was applied on different driving cycles such as the NEDC, WLTC, CADC (urban and highway), and an in-house developed driving cycle. The ambient temperature was varied between −7°C to represent the coldest winter and 20°C. The results of this study summarize the ability of the hot coolant storage strategy in reducing the fuel consumption, and show the best driving cycle that needs to be applied on along with the influence of the different ambient temperatures.


2013 ◽  
Vol 315 ◽  
pp. 423-427
Author(s):  
Halim Razali ◽  
Kamaruzzaman Sopian ◽  
Ali Sohif Mat

Estimation of the life cycle cost (LCC) for a hydrogen internal combustion engine (H2ICE) that uses hydrogen as an alternative fuel by forecasting a financial investment plan for a period of five years (n = 5). This is influenced by the interest rate of 10% (i = 10). The effect of Annual Operating Cost and salvage value in the LCC for H2ICE would give impact on the cost of investment and economic growth in the long term. The result shows the brake specific fuel consumption to achieve 14% savings for grams per kilowatt hour for the engine (G + H2) compared to the engine (G). The operation of H2ICE in the first year would be increased by 22%, the reason is due to the cost of equipment, maintenance and purchase of new components. However, the percentage of operation cost for the following five to ten year of Present worth (PW) is reduced to 0.36% in the fourth year (n = 4) within the interest rate of 10%. The return of initial investment in the capital-first cost (FC) is to occur at the beginning of the fifth year (n = 5) of H2ICE operations. The cost of savings for the next five years would become more profitable reaching 37% reduction in cost compared to conventional fuel consumption


2019 ◽  
Vol 178 (3) ◽  
pp. 228-234
Author(s):  
Wojciech GIS ◽  
Maciej GIS ◽  
Piotr WIŚNIOWSKI ◽  
Mateusz BEDNARSKI

Air pollution is a challenge for municipal authorities. Increased emission of PM10 and PM 2.5 particles is particularly noticeable in Poland primarily the autumn and winter period. That is due to the start of the heating season. According to the above data, road transport accounted for approximately 5% of the creation of PM10 particles, ca. 7% of PM2.5 and approximately 32% for NOx. In Poland, suspended particles (PM10 and PM2.5) cause deaths of as many as 45,000 people a year. The issue of smog also affects other European cities. Therefore, it is necessary to undertake concrete efforts in order to reduce vehicle exhaust emissions as much as possible. It is therefore justifiable to reduce the emission of exhaust pollution, particularly NOx, PM, PN by conventional passenger cars powered by compression ignition engines. Emissions by these passenger cars have been reduced systematically. Comparative tests of the above emission of exhaust pollution were conducted on chassis dynamometer of such passenger car in NEDC cycle and in the new WLTC cycle in order to verify the level of emissions from this type of passenger car. Measurements of fuel consumption by that car were also taken. Emission of exhaust pollution and fuel consumption of the this car were also taken in the RDE road test.


Sign in / Sign up

Export Citation Format

Share Document