AN ANTIBIOTIC-PRODUCING BACTERIUM OF THE GENUS PSEUDOMONAS

1954 ◽  
Vol 1 (2) ◽  
pp. 118-124 ◽  
Author(s):  
S. H. F. Chinn

A Gram-negative rod, conforming; to Pseudomonas viscosa (Frankland and Frankland) Migula, was isolated in practically pure culture from a sample of wheat that did not show the usual mixture of epiphytes. In vitro studies revealed an unusual antibiotic spectrum against a variety of Gram-positive and -negative bacteria as well as against Helminthosporium sativum and Fusarium culmorum. Comparative.studies of the organism and P. aeruginosa, P. fluorescens, and P. chlororaphis indicated that it possessed greater antibiotic activity than any of these three species of Pseudomonas. Application to the control of some plant pathogenic organisms is suggested.

1977 ◽  
Vol 5 (1) ◽  
pp. 58-61 ◽  
Author(s):  
M F Parry ◽  
H C Neu

The antibiotic bacerial inactivity of N-acetylcysteine (NAC) and its interaction with penicillin and aminocyclitol antibiotics was evaluated. NAC inhibited growth of both gram-negative and gram-positive bacteria. Strains of Pseudomonas aeruginosa were more susceptible than other microorgainsms tested. P. aeruginosa strains were inhibited synergistically by NAC and carbenicillin or ticarcillin. However, NAC antagonized the activity of gentamicin and tobramycin. These findings have implications for the combined clinical use of NAC and aerosolized antibiotics and are also important for the processing of sputum specimens in the microbiology laboratory.


2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


2011 ◽  
Vol 78 (1) ◽  
pp. 34-41 ◽  
Author(s):  
Jean-Benjamin Murat ◽  
Frédéric Grenouillet ◽  
Gabriel Reboux ◽  
Emmanuelle Penven ◽  
Adam Batchili ◽  
...  

ABSTRACTHypersensitivity pneumonitis, also known as “machine operator's lung” (MOL), has been related to microorganisms growing in metalworking fluids (MWFs), especiallyMycobacterium immunogenum. We aimed to (i) describe the microbiological contamination of MWFs and (ii) look for chemical, physical, and environmental parameters associated with variations in microbiological profiles. We microbiologically analyzed 180 MWF samples from nonautomotive plants (e.g., screw-machining or metal-cutting plants) in the Franche-Comté region in eastern France and 165 samples from three French automotive plants in which cases of MOL had been proven. Our results revealed two types of microbial biomes: the first was from the nonautomotive industry, showed predominantly Gram-negative rods (GNR), and was associated with a low risk of MOL, and the second came from the automotive industry that was affected by cases of MOL and showed predominantly Gram-positive rods (GPR). Traces ofM. immunogenumwere sporadically detected in the first type, while it was highly prevalent in the automotive sector, with up to 38% of samples testing positive. The use of chromium, nickel, or iron was associated with growth of Gram-negative rods; conversely, growth of Gram-positive rods was associated with the absence of these metals. Synthetic MWFs were more frequently sterile than emulsions. Vegetable oil-based emulsions were associated with GNR, while mineral ones were associated with GPR. Our results suggest that metal types and the nature of MWF play a part in MWF contamination, and this work shall be followed by furtherin vitrosimulation experiments on the kinetics of microbial populations, focusing on the phenomena of inhibition and synergy.


2021 ◽  
Vol 19 (9) ◽  
pp. 38-45
Author(s):  
Hussein H. Al-Turnachy ◽  
Fadhilk. alibraheemi ◽  
Ahmed Abd Alreda Madhloom ◽  
Zahraa Yosif Motaweq ◽  
Nibras Yahya Abdulla

The present study was included the assessment of the antimicrobial activity of AgNPs synthesized by Punica granatum peel extract against pathogenic bacteria by testing warm aqueous P. granatum peel extract and silver nanoparticles. Punica granatum indicated potency for AgNP extracellular nanobiosynthesis after addition of silver nitrate (AgNO3) 4mM to the extract supernatant, in both concentrations (100mg and 50mg). The biogenic AgNPs showed potency to inhibit both gram-negative and gram-positive bacterial growth. Zons of inhibition in (mm) was lesser in gram-positive than gram-negative bacteria. The resulted phytogenic AgNPs gave higher biological activity than warm aqueous Punica granatum peel extract. The inhibition zone of the phytogenic AgNPs on E. coli reached 17.53, 22.35, and 26.06 mm at (0.1, 0.5, and 1) mg/ml respectively. While inhibition zones of Punica warm aqueous extract reached 5.33, 10.63, and 16.08 mm at the same concentrations. phytogenic AgNPs gave smaller inhibition zones in gram-positive than gram- negative. Cytotoxic activity of the phytogenic AgNPs was assayed in vitro agaist human blood erythrocytes (RBCs), spectroscopic results showed absorbance at 540 nm hemolysis was observed. In general, AgNPs showed least RBCs hemolysis percentage, at 1 mg/ml concentration, hemolysis percentage was (4.50%). This study, concluded that the Punica granatum peel extract has the power of synthses of AgNPs characterized by broad spectrum antimicrobial activity with cyto-toxicity proportional to AgNPs concentration.


Author(s):  
Meredith A. Hackel ◽  
James A. Karlowsky ◽  
Michele A. Canino ◽  
Daniel F. Sahm ◽  
Nicole E. Scangarella-Oman

Gepotidacin (formerly GSK2140944) is a first in class triazaacenaphthylene antibacterial currently in Phase III clinical trials. When tested against Gram-negative ( n =333) and Gram-positive ( n =225) anaerobes by agar dilution, gepotidacin inhibited 90% of isolates (MIC 90 ) at concentrations of 4 and 2 μg/ml, respectively. Given gepotidacin’s in vitro activity against the anaerobic isolates tested, further study is warranted to better understand gepotidacin’s utility in the treatment of infections caused by clinically relevant anaerobic organisms.


2010 ◽  
Vol 25 (1) ◽  
Author(s):  
Elisabetta Maioli ◽  
Erika Coppo ◽  
Ramona Barbieri ◽  
Elisabetta Canepa ◽  
Laura Gualco ◽  
...  

ChemMedChem ◽  
2018 ◽  
Vol 13 (23) ◽  
pp. 2573-2580 ◽  
Author(s):  
Cecilia C. Russell ◽  
Andrew Stevens ◽  
Hongfei Pi ◽  
Manouchehr Khazandi ◽  
Abiodun D. Ogunniyi ◽  
...  

2015 ◽  
Vol 25 (2-3) ◽  
pp. 79-93 ◽  
Author(s):  
Joseph W. Lengeler

<b><i>Past:</i></b> The title ‘PTS 50 or The PTS after 50 years' relies on the first description in 1964 of the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system (PTS) by Kundig, Gosh and Roseman [Proc Natl Acad Sci USA 1964;52:1067-1074]. The system comprised proteins named Enzyme I, HPr and Enzymes II, as part of a novel PTS for carbohydrates in Gram-negative and Gram-positive bacteria, whose ‘biological significance remained unclear'. In contrast, studies which would eventually lead to the discovery of the central role of the PTS in bacterial metabolism had been published since before 1942. They are primarily linked to names like Epps and Gale, J. Monod, Cohn and Horibata, and B. Magasanik, and to phenomena like ‘glucose effects', ‘diauxie', ‘catabolite repression' and carbohydrate transport. <b><i>Present:</i></b> The pioneering work from Roseman's group initiated a flood of publications. The extraordinary progress from 1964 to this day in the qualitative and in vitro description of the genes and enzymes of the PTS, and of its multiple roles in global cellular control through ‘inducer exclusion', gene induction and ‘catabolite repression', in cellular growth, in cell differentiation and in chemotaxis, as well as the differences of its functions between Gram-positive and Gram-negative bacteria, was one theme of the meeting and will not be treated in detail here. <b><i>Future:</i></b> At the 1988 Paris meeting entitled ‘The PTS after 25 years', Saul Roseman predicted that ‘we must describe these interactions [of the PTS components] in a quantitative way [under] in vivo conditions'. I will present some results obtained by our group during recent years on the old phenomenon of diauxie by means of very fast and quantitative tests, measured in vivo, and obtained from cultures of isogenic mutant strains growing under chemostat conditions. The results begin to hint at the problems relating to future PTS research, but also to the ‘true science' of Roseman.


Sign in / Sign up

Export Citation Format

Share Document