THE INFLUENCE OF NITROGENOUS COMPOUNDS ON GROWTH OF PYTHIUM SPECIES

1967 ◽  
Vol 13 (11) ◽  
pp. 1509-1519 ◽  
Author(s):  
V. P. Agnihotri ◽  
O. Vaartaja

The utilization of N compounds by P. ultimum Trow (strain I and II), P. rostratum Butler, and P. irregulare Buisman was examined in a chemically denned medium under controlled conditions in surface culture. All species were able to metabolize nitrate, ammonium, and organic nitrogen, and the amount of growth varied with the nitrogen source. In general, yeast extract, peptone, glycine, serine, histidine, cysteine, asparagine, aspartic acid, and glutamic acid supported favorable growth, whereas γ-aminobutyric acid, threonine, and alanine supported poor growth of these fungi. The addition of succinic acid at 0.02 M concentration to ammonium compounds further increased growth of four isolates.Preferential utilization of amino acids from a given mixture was recorded using paper chromatographic techniques. All four isolates gave more vegetative growth on mixtures of amino acids than when they were supplied singly.


1963 ◽  
Vol 41 (1) ◽  
pp. 1089-1097 ◽  
Author(s):  
O. H. Gaebler ◽  
Harold C. Choitz ◽  
Trieste G. Vitti ◽  
Robert Vukmirovich

The purpose of this study was to determine whether the small increase in abundance of N15 normally found in nitrogenous compounds of biological origin is primarily due to mass discrimination in nitrogen metabolism, or to reproducible analytical errors.This problem was approached by repeatedly determining N15 in the same series of nine amino acids, either purchased in chromatographically pure form or isolated from proteins of rat liver, dog serum, and six plant sources. Proteins and amino acids included in the study were selected on the premise that concentration or redistribution of N15 might occur in such processes in urea formation, nitrogen transfer, or nitrogen fixation. Data for N15 excess in a series of alkaloids were also secured.Standard deviations obtained in series of analyses were too small, and values for N15 excess in the same amino acids isolated from different sources too variable, to permit interpreting the observed N15 excess as a reproducible error. Distribution of N15 in amino acids of the animal proteins studied resembled that observed when N15-labelled amino acids or ammonium compounds are given. Differences between results for amino acids of animal and plant origin also supported the idea that the small excess of N15 normally found is metabolically as well as statistically significant. Results for N15 in amide nitrogen likewise supported this view. The smallest excess of N15 occurred in amino acids from proteins of legumes, which fix nitrogen. In synthetic amino acids, the concentration of N15 was more often below than above normal abundance.



1968 ◽  
Vol 14 (11) ◽  
pp. 1253-1258 ◽  
Author(s):  
V. P. Agnihotri

The effects of different nitrogen sources on growth and sclerotial production by Aspergillus niger were determined on a synthetic agar medium. The organism used inorganic, organic, and ammonium nitrogen for growth and sclerotial production. Among the ammonium compounds tested, the chloride, phosphate, sulfate, and carbonate were used poorly, but the nitrate was well utilized. Addition of organic acids to ammonium compounds increased sclerotial production. Raising the concentration of sodium nitrate to a certain level (0.15%) increased the number of sclerotial initials and the number and weight of those which matured. Sodium nitrite curtailed mycelial growth and prevented production of sclerotia. Utilization of nitrite was accelerated by adjusting the pH on the alkaline side from 7.5 to 9.0. Urea supported poor sclerotial production; thiourea inhibited it. Of the amino acids, histidine yielded the most and arginine the least number of sclerotia. In lysine medium, the white cottony sclerotial initials remained fluffy even after 20 days. Sclerotial production decreased significantly when proline, glutamic acid, or leucine were omitted from the basal medium containing 10 amino acids. In general, no correlation existed between the number of sclerotia formed and the dry weight they attained on different nitrogen sources. With certain nitrogen sources sclerotial initials failed to mature.



1971 ◽  
Vol 49 (12) ◽  
pp. 2175-2186 ◽  
Author(s):  
R. V. Clark

Four isolates of C. sativus that had shown tendencies to give a differential pathogenic response when used to inoculate the foliage of several cereals grew well on a number of inorganic and organic nitrogen sources but showed no benefit from the addition of several vitamins. In general, the four isolates were consistent in their relative growth pattern although on occasion the order was changed slightly and when compared every 2 days a number of variations were noted. In some cases the amount of sporulation by the isolates was changed by certain chemicals. There was little evidence of a differential pathogenicity with inoculum grown on media containing different amino acids. However, inoculum grown on media containing methionine and isoleucine produced strikingly atypical leaf lesions on barley and wheat.All nitrogen sources tested supported some growth with the possible exception of cysteine. Comparing amino acids, maximum growth occurred on histidine, threonine, and hydroxyproline when equal amounts of sodium nitrate and amino acid were added to the basal medium, and on histidine, valine, and serine when only amino acid was used as the nitrogen source. With most acids growth was rapid for the first few days after inoculation and considerably slower later. In two cases practically no growth occurred during the second week of incubation. A chromatographic study of the culture filtrates showed that there was a variation in the speed at which the amino acids were taken up by the isolates. Several acids that supported rather poor growth were used up very quickly.



1963 ◽  
Vol 41 (5) ◽  
pp. 1089-1097 ◽  
Author(s):  
O. H. Gaebler ◽  
Harold C. Choitz ◽  
Trieste G. Vitti ◽  
Robert Vukmirovich

The purpose of this study was to determine whether the small increase in abundance of N15 normally found in nitrogenous compounds of biological origin is primarily due to mass discrimination in nitrogen metabolism, or to reproducible analytical errors.This problem was approached by repeatedly determining N15 in the same series of nine amino acids, either purchased in chromatographically pure form or isolated from proteins of rat liver, dog serum, and six plant sources. Proteins and amino acids included in the study were selected on the premise that concentration or redistribution of N15 might occur in such processes in urea formation, nitrogen transfer, or nitrogen fixation. Data for N15 excess in a series of alkaloids were also secured.Standard deviations obtained in series of analyses were too small, and values for N15 excess in the same amino acids isolated from different sources too variable, to permit interpreting the observed N15 excess as a reproducible error. Distribution of N15 in amino acids of the animal proteins studied resembled that observed when N15-labelled amino acids or ammonium compounds are given. Differences between results for amino acids of animal and plant origin also supported the idea that the small excess of N15 normally found is metabolically as well as statistically significant. Results for N15 in amide nitrogen likewise supported this view. The smallest excess of N15 occurred in amino acids from proteins of legumes, which fix nitrogen. In synthetic amino acids, the concentration of N15 was more often below than above normal abundance.



1958 ◽  
Vol 11 (4) ◽  
pp. 529 ◽  
Author(s):  
GW Butler ◽  
NO Bathurst

"Free" and "bound" amino acids in root nodules from 10 legume species have been studied. In general, the free amino acids comprise a small proportion (25 per cent. or less) of the total nitrogenous compounds soluble in 80 per cent. (v/v) ethanol.



1964 ◽  
Vol 11 (01) ◽  
pp. 064-074 ◽  
Author(s):  
Robert H Wagner ◽  
William D McLester ◽  
Marion Smith ◽  
K. M Brinkhous

Summary1. The use of several amino acids, glycine, alpha-aminobutyric acid, alanine, beta-alanine, and gamma-aminobutyric acid, as plasma protein precipitants is described.2. A specific procedure is detailed for the preparation of canine antihemophilic factor (AHF, Factor VIII) in which glycine, beta-alanine, and gammaaminobutyric acid serve as the protein precipitants.3. Preliminary results are reported for the precipitation of bovine and human AHF with amino acids.



2020 ◽  
Vol 21 (8) ◽  
pp. 785-798 ◽  
Author(s):  
Abedin Abdallah ◽  
Evera Elemba ◽  
Qingzhen Zhong ◽  
Zewei Sun

The gastrointestinal tract (GIT) of humans and animals is host to a complex community of different microorganisms whose activities significantly influence host nutrition and health through enhanced metabolic capabilities, protection against pathogens, and regulation of the gastrointestinal development and immune system. New molecular technologies and concepts have revealed distinct interactions between the gut microbiota and dietary amino acids (AAs) especially in relation to AA metabolism and utilization in resident bacteria in the digestive tract, and these interactions may play significant roles in host nutrition and health as well as the efficiency of dietary AA supplementation. After the protein is digested and AAs and peptides are absorbed in the small intestine, significant levels of endogenous and exogenous nitrogenous compounds enter the large intestine through the ileocaecal junction. Once they move in the colonic lumen, these compounds are not markedly absorbed by the large intestinal mucosa, but undergo intense proteolysis by colonic microbiota leading to the release of peptides and AAs and result in the production of numerous bacterial metabolites such as ammonia, amines, short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), hydrogen sulfide, organic acids, and phenols. These metabolites influence various signaling pathways in epithelial cells, regulate the mucosal immune system in the host, and modulate gene expression of bacteria which results in the synthesis of enzymes associated with AA metabolism. This review aims to summarize the current literature relating to how the interactions between dietary amino acids and gut microbiota may promote host nutrition and health.



Sign in / Sign up

Export Citation Format

Share Document