Self-inhibition of arthrospore germination in Geotrichum candidum

1973 ◽  
Vol 19 (8) ◽  
pp. 943-947 ◽  
Author(s):  
S. D. Steele

An attempt to isolate a self-inhibitor of spore germination in Geotrichum candidum Link was unsuccessful because of the instability of the self-inhibitor. The ability of different carbon sources to stimulate germination and support somatic growth was tested in self-inhibitory conditions. Acetate, fructose, galactose, and glycerol supported both germination and somatic growth. All the fatty acids tested allowed germination but were unable to support vegetative growth; conversely mannitol could not induce germination but did support vegetative growth. Measurements of oxygen uptake by germinating arthrospores at various arthrospore concentrations showed a decrease in oxygen uptake per spore as the spore concentration (= self-inhibitor concentration) increased. Oxygen uptake per spore by dormant arthrospores also decreased with increasing spore concentration. Spore age was another factor influencing oxygen uptake by dormant spores; oxygen uptake per spore decreased with increasing spore age up to 7 days. Continued aging did not decrease the rate of oxygen uptake any further.

1974 ◽  
Vol 142 (3) ◽  
pp. 611-618 ◽  
Author(s):  
D. Michael W. Salmon ◽  
Neil L. Bowen ◽  
Douglas A. Hems

1. Fatty acid synthesis de novo was measured in the perfused liver of fed mice. 2. The total rate, measured by the incorporation into fatty acid of3H from3H2O (1–7μmol of fatty acid/h per g of fresh liver), resembled the rate found in the liver of intact mice. 3. Perfusions with l-[U-14C]lactic acid and [U-14C]glucose showed that circulating glucose at concentrations less than about 17mm was not a major carbon source for newly synthesized fatty acid, whereas lactate (10mm) markedly stimulated fatty acid synthesis, and contributed extensive carbon to lipogenesis. 4. The identification of 50% of the carbon converted into newly synthesized fatty acid lends further credibility to the use of3H2O to measure hepatic fatty acid synthesis. 5. The total rate of fatty acid synthesis, and the contribution of glucose carbon to lipogenesis, were directly proportional to the initial hepatic glycogen concentration. 6. The proportion of total newly synthesized lipid that was released into the perfusion medium was 12–16%. 7. The major products of lipogenesis were saturated fatty acids in triglyceride and phospholipid. 8. The rate of cholesterol synthesis, also measured with3H2O, expressed as acetyl residues consumed, was about one-fourth of the basal rate of fatty acid synthesis. 9. These results are discussed in terms of the carbon sources of hepatic newly synthesized fatty acids, and the effect of glucose, glycogen and lactate in stimulating lipogenesis, independently of their role as precursors.


1998 ◽  
Vol 44 (7) ◽  
pp. 687-691 ◽  
Author(s):  
Brian Hall ◽  
Jennifer Baldwin ◽  
Ho Gun Rhie ◽  
Douglas Dennis

The polyhydroxyalkanoate (PHA) synthase gene (phaCNc) from Nocardia corallina was identified in a lambda library on a 6-kb BamHI fragment. A 2.8-kb XhoII subfragment was found to contain the ntact PHA synthase. This 2.8-kb fragment was subjected to DNA sequencing and was found to contain the coding region for the PHA synthase and a small downstream open reading frame of unknown function. On the basis of DNA sequence, phaCNc is closest in homology to the PHA synthases (phaCPaI and phaCPaII) of Pseudomonas aeruginosa (approximately 41% identity and 55% similarity). The 2.8-kb XhoII fragment containing phaCNc was subcloned into broad host range mobilizable plasmids and transferred into Escherichia coli, Klebsiella aerogenes (both containing a plasmid bearing phaA and phaB from Ralstonia eutropha), and PHA-negative strains of R. eutropha and Pseudomonas putida. The recombinant strains were grown on various carbon sources and the resulting polymers were analyzed. In these strains, the PHA synthase from N. corallina was able to mediate the production of poly(3-hydroxybutyrate-co-3-hydroxy-hexanoate) containing high levels of 3-hydroxyhexanoate when grown on hexanoate and larger even-chain fatty acids and poly(3-hydroxyvalerate-co-3-hydroxyheptanoate) containing high levels of 3-hydroxyheptanoate when grown on heptanoate or larger odd-chain fatty acids. Key words: polyhydroxyalkanoates (PHAs), Nocardia corallina, biodegradable, polyester.


2005 ◽  
Vol 55 (4) ◽  
pp. 1563-1568 ◽  
Author(s):  
Jarkko Rapala ◽  
Katri A. Berg ◽  
Christina Lyra ◽  
R. Maarit Niemi ◽  
Werner Manz ◽  
...  

Thirteen bacterial isolates from lake sediment, capable of degrading cyanobacterial hepatotoxins microcystins and nodularin, were characterized by phenotypic, genetic and genomic approaches. Cells of these isolates were Gram-negative, motile by means of a single polar flagellum, oxidase-positive, weakly catalase-positive and rod-shaped. According to phenotypic characteristics (carbon utilization, fatty acid and enzyme activity profiles), the G+C content of the genomic DNA (66·1–68·0 mol%) and 16S rRNA gene sequence analysis (98·9–100 % similarity) the strains formed a single microdiverse genospecies that was most closely related to Roseateles depolymerans (95·7–96·3 % 16S rRNA gene sequence similarity). The isolates assimilated only a few carbon sources. Of the 96 carbon sources tested, Tween 40 was the only one used by all strains. The strains were able to mineralize phosphorus from organic compounds, and they had strong leucine arylamidase and chymotrypsin activities. The cellular fatty acids identified from all strains were C16 : 0 (9·8–19 %) and C17 : 1 ω7c (<1–5·8 %). The other predominant fatty acids comprised three groups: summed feature 3 (<1–2·2 %), which included C14 : 0 3-OH and C16 : 1 iso I, summed feature 4 (54–62 %), which included C16 : 1 ω7c and C15 : 0 iso OH, and summed feature 7 (8·5–28 %), which included ω7c, ω9c and ω12t forms of C18 : 1. A more detailed analysis of two strains indicated that C16 : 1 ω7c was the main fatty acid. The phylogenetic and phenotypic features separating our strains from recognized bacteria support the creation of a novel genus and species, for which the name Paucibacter toxinivorans gen. nov., sp. nov. is proposed. The type strain is 2C20T (=DSM 16998T=HAMBI 2767T=VYH 193597T).


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Iwona Gientka ◽  
Marek Kieliszek ◽  
Karolina Jermacz ◽  
Stanisław Błażejak

The search for efficient oleaginous microorganisms, which can be an alternative to fossil fuels and biofuels obtained from oilseed crops, has been going on for many years. The suitability of microorganisms in this regard is determined by their ability to biosynthesize lipids with preferred fatty acid profile along with the concurrent utilization of energy-rich industrial waste. In this study, we isolated, characterized, and identified kefir yeast strains using molecular biology techniques. The yeast isolates identified wereCandida inconspicua,Debaryomyces hansenii,Kluyveromyces marxianus,Kazachstania unispora, andZygotorulaspora florentina. We showed that deproteinated potato wastewater, a starch processing industry waste, supplemented with various carbon sources, including lactose and glycerol, is a suitable medium for the growth of yeast, which allows an accumulation of over 20% of lipid substances in its cells. Fatty acid composition primarily depended on the yeast strain and the carbon source used, and, based on our results, most of the strains met the criteria required for the production of biodiesel. In particular, this concerns a significant share of saturated fatty acids, such as C16:0 and C18:0, and unsaturated fatty acids, such as C18:1 and C18:2. The highest efficiency in lipid biosynthesis exceeded 6.3 g L−1.Kazachstania unisporawas able to accumulate the high amount of palmitoleic acid.


Tetrahedron ◽  
1987 ◽  
Vol 43 (19) ◽  
pp. 4385-4394 ◽  
Author(s):  
A.V.Rama Rao ◽  
E.Rajarathnam Reddy ◽  
A.V. Purandare ◽  
Ch.V.N.S. Varaprasad

1977 ◽  
Vol 23 (7) ◽  
pp. 845-851 ◽  
Author(s):  
D. Brewer ◽  
W. S. G. Maass ◽  
A. Taylor

It has been shown that 2,5-dihydroxy-1,4-benzoquinones decrease vegetative growth and inhibit spore germination of 12 species of fungi belonging to six diverse genera. The nature of the substituents at the 3 and 6 positions of the quinone ring also affected their growth-inhibitory properties; generally those substituents of lower polarity inhibited growth at lower concentrations. As in the case of cochliodinol, chemical modification of the quinone group, or the hydroxyl groups of the quinone ring, in compounds of the polyporic acid series, also led to loss of biological activity.


2006 ◽  
Vol 3 (2) ◽  
pp. 175-185 ◽  
Author(s):  
S. Bouillon ◽  
H. T. S. Boschker

Abstract. Coastal ecosystems are typically highly productive, and the sediments in these systems receive organic matter from a variety of local and imported sources. To assess if general patterns are present in the origin of carbon sources for sedimentary bacteria and their relation to the origin of the sediment organic carbon pool, we compiled both literature and new data on δ13C of bacterial biomarkers (the phospholipid derived fatty acids i+a15:0), along with δ13C data on sediment organic carbon (δ13CTOC) and macrophyte biomass from a variety of typical near-coastal systems. These systems included mangroves, salt marshes (both C3 and C4-dominated sites), seagrass beds, and macroalgae-based systems, as well as unvegetated sediments. First, our δ13Ci+a15:0 data showed large variability over the entire range of δ13CTOC, indicating that in many settings, bacteria may depend on carbon derived from various origins. Secondly, systems where local macrophyte production is the major supplier of organic carbon for in situ decomposition are generally limited to organic carbon-rich, peaty sites (TOC>10 wt%), which are likely to make up only a small part of the global area of vegetated coastal systems. These carbon-rich sediments also provided a field based estimate of isotopic fractionation between bacterial carbon sources and biomarkers (-3.7±2.1), which is similar to the expected value of about -3 associated with the biosynthesis of fatty acids. Thirdly, only in systems with low TOC (below ~1 wt%), we consistently found that bacteria were selectively utilizing an isotopically enriched carbon source, which may be root exudates but more likely is derived from microphytobenthos. In other systems with between ~1 and 10 wt% TOC, bacteria appear to show on average little selectivity and δ13Ci+a15:0 data generally follow the δ13CTOC, even in systems where the TOC is a mixture of algal and macrophyte sources that generally are believed to have a very different degradability.


1989 ◽  
Vol 9 (6) ◽  
pp. 2598-2605 ◽  
Author(s):  
E E Capowski ◽  
J M Wells ◽  
G S Harrison ◽  
K M Karrer

We have cloned two DNA fragments containing 5'-GATC-3' sites at which the adenine is methylated in the macronucleus of the ciliate Tetrahymena thermophila. Using these cloned fragments as molecular probes, we analyzed the maintenance of methylation patterns at two partially and two uniformly methylated sites. Our results suggest that a semiconservative copying model for maintenance of methylation is not sufficient to account for the methylation patterns we found during somatic growth of Tetrahymena. Although we detected hemimethylated molecules in macronuclear DNA, they were present in both replicating and nonreplicating DNA. In addition, we observed that a complex methylation pattern including partially methylated sites was maintained during vegetative growth. This required the activity of a methylase capable of recognizing and modifying sites specified by something other than hemimethylation. We suggest that a eucaryotic maintenance methylase may be capable of discriminating between potential methylation sites to ensure the inheritance of methylation patterns.


Sign in / Sign up

Export Citation Format

Share Document