The structure of cellulose-producing bacteria, Acetobacter xylinum and Acetobacter acetigenus

1977 ◽  
Vol 23 (6) ◽  
pp. 790-797 ◽  
Author(s):  
J. Ross Colvin ◽  
L. C. Sowden ◽  
Gary G. Leppard

The structure of the pellicles and cells of the cellulose-producing bacteria, Acetobacter xylinum and Acetobacter acetigenus, was studied by transmission electron microscopy of thin sections and freeze-etch replicas of glucose-stimulated cell suspensions, quiescent cell suspensions, and discrete pellicles. These bacteria have a relatively thin cell wall in section, with several irregular features superimposed on an otherwise simple, Gram-negative morphology. There are no flagella or pili. Unfixed, unextracted cells, viewed as whole mounts, show spherical or ellipsoidal bodies of undetermined composition which disappear after extraction with water or ethanol and propylene oxide. For both species, there are several kinds of cell surface irregularities, some of which are localized protrusions of the cell envelope. A variety of irregularities is seen frequently on cells in the first minutes of glucose incubation, on cells in a discrete pellicle, on quiescent cells, and on starved cells. Immediately after the addition of glucose to cellulose-free cells in suspension culture, fine fibrils appear on and (or) near the cell envelope. The fine fibrils are frequently as small as 3 nm in diameter in both freeze-etch and thin-section preparations and are frequently associated with freshly synthesized cellulose fibrils. Starved cells in suspensions free of (classical) microfibrils sometimes reveal stubs of an extracellular structure whose morphology resembles that of a nascent cellulose fibril.

1977 ◽  
Vol 23 (6) ◽  
pp. 701-709 ◽  
Author(s):  
J. Ross Colvin ◽  
Gary G. Leppard

The morphological aspects of biosynthesis of cellulose by Acetobacter xylinum and Acetobacter acetigenus were studied by transmission electron microscopy of both freeze-etch replicas and sections of cellulose-free cells in suspension culture before and subsequent to the induction of cellulose synthesis. Also examined were freshly synthesized, thoroughly washed, cellulose pellicles. Thin sections of rapidly dividing, glucose-metabolizing cells of both species showed irregular features on the cell surface including a small polar invagination which sometimes contained or was associated with fibrils as fine as 3 nm in diameter of a substance which stains with electron-microscopic counterstains. Cellulose microfibrils in thin sections of freshly synthesized pellicles were coated with a surface material which also stained with the same counterstains (uranyl ions and lead ions). The effect of air-drying on freshly synthesized cellulose was striking. When examined by freeze-etching, thoroughly washed, never air-dried pellicles of both species showed a nascent form of cellulose fibril which consisted of a central, dense core surrounded by a sheath of amorphous gel. This sheath may be up to 100 nm wide. When the pellicle was air-dried and rehydrated before freeze-etching, the amorphous sheath was rare and shrunken but ordinary microfibrils of classical dimensions were visible. The sheath and core are sometimes closely associated with the envelope of the cells of both species. These observations can be interpreted in the context of recent advances in cellulose synthesis by assuming that chains of an initial, highly hydrated, intermediate polyglucan are released from the cell and that such chains associate to form a nascent fibril external to the cell but associated with the cell envelope. Air-drying of nascent fibrils converts them to classical microfibrils and this conversion is considered here in molecular terms.


Author(s):  
Robert Glaeser ◽  
Thomas Bauer ◽  
David Grano

In transmission electron microscopy, the 3-dimensional structure of an object is usually obtained in one of two ways. For objects which can be included in one specimen, as for example with elements included in freeze- dried whole mounts and examined with a high voltage microscope, stereo pairs can be obtained which exhibit the 3-D structure of the element. For objects which can not be included in one specimen, the 3-D shape is obtained by reconstruction from serial sections. However, without stereo imagery, only detail which remains constant within the thickness of the section can be used in the reconstruction; consequently, the choice is between a low resolution reconstruction using a few thick sections and a better resolution reconstruction using many thin sections, generally a tedious chore. This paper describes an approach to 3-D reconstruction which uses stereo images of serial thick sections to reconstruct an object including detail which changes within the depth of an individual thick section.


1984 ◽  
Vol 99 (1) ◽  
pp. 203s-208s ◽  
Author(s):  
E G Fey ◽  
D G Capco ◽  
G Krochmalnic ◽  
S Penman

Cytoskeletal structures obtained after extraction of Madin-Darby canine kidney epithelial cell monolayers with Triton X-100 were examined in transmission electron micrographs of cell whole mounts and unembedded thick sections. The cytoskeleton, an ordered structure consisting of a peripheral plasma lamina, a complex network of filaments, and chromatin-containing nuclei, was revealed after extraction of intact cells with a nearly physiological buffer containing Triton X-100. The cytoskeleton was further fractionated by extraction with (NH4)2SO4, which left a structure enriched in intermediate filaments and desmosomes around the nuclei. A further digestion with nuclease and elution with (NH4)2SO4 removed the chromatin. The stable structure that remained after this procedure retained much of the epithelial morphology and contained essentially all of the cytokeratin filaments and desmosomes and the chromatin-depleted nuclear matrices. This structural network may serve as a scaffold for epithelial organization. The cytoskeleton and the underlying nuclear matrix intermediate filament scaffold, when examined in both conventional embedded thin sections and in unembedded whole mounts and thick sections, showed the retention of many of the detailed morphological aspects of the intact cells, which suggests a structural continuum linking the nuclear matrix, the intermediate filament network, and the intercellular desmosomal junctions. Most importantly, the protein composition of each of the four fractions obtained by this sequential procedure was essentially unique. Thus, the proteins constituting the soluble fraction, the cytoskeleton, the chromatin fraction, and the underlying nuclear matrix-intermediate filament scaffold are biochemically distinct.


1965 ◽  
Vol 25 (2) ◽  
pp. 191-207 ◽  
Author(s):  
G. Ben-Hayyim ◽  
I. Ohad

The transfer of the glucosyl moiety from uridine diphosphate glucose in the presence of Acetobacter xylinum cell-free extracts led to the formation of a mixture of alkali-soluble and -insoluble cellodextrins. Typical cellulose fibrils could not be detected by electron microscopy in this product. Immediately after release into the medium, cellulose formed by whole cells is in a "prefibrous" form which passes through Millipore filters of 0.45 and 0.8 µ pore diameter. Non-filtrable fibrils arise from this material probably by a process of crystallization involving no extracellular enzymes. Fibrils formed in shaken cell suspensions intertwine and form aggregates visible to the naked eye. In quiet suspensions pellicles are formed which float on the surface. Soluble Na-carboxymethylcellulose (CMC) is incorporated into cellulose fibrils formed in its presence, probably by a process of co-crystallization. Aggregation of fibrils containing CMC is delayed because of electrostatic repulsion between carboxylic groups. The aggregation time depends on the amount of CMC incorporated, its degree of substitution, the pH of the medium, and the ionic strength. The amount of CMC incorporated depends on the relative concentration CMC/cellulose and on the similarity of the CMC and the cellulose molecules i.e. in molecular weight and the number of carboxyl substitutions. Cellulose pellicles formed in the presence of CMC by unshaken cell suspensions consist of crossed, superimposed layers of parallel oriented cellulose fibrils. The same phenomenon is observed when phosphomannan, but not levan, is substituted for CMC. The biogenesis of oriented cellulose fibrils is envisaged as a process comprising the following steps: polymerization of the monomeric precursor, diffusion of the molecule to crystallization sites, crystallization, and orientation. It is proposed that charged polysaccharides play a role similar to that of CMC in affecting the orientation of cellulose fibrils in the plant cell wall.


1976 ◽  
Vol 21 (1) ◽  
pp. 47-58
Author(s):  
P.S. Woods ◽  
M.C. Ledbetter

A method of direct visualization of cell organelles by scanning electron microscopy (SEM) is described. Plant and animal tissues fixed in glutaraldehyde and osmium tetroxide are treated with the ligand thiocarbohydrazide and a second osmium tetroxide solution, to increase their osmium content. Tissues are then dehydrated, infiltrated with an epoxy monomer, and together solidified with dry ice and fractured. The pieces are transferred to pure acetone, critical-point dried, attached to stubs with silver paint and viewed by SEM. The ligating procedure increases the osmium concentration at its original bonding site sufficiently to render the tissue electrically conductive, thus obviating the need for metallic coating. he organelles at the fractured surface are revaled in relation to their osmium incorporation rather than by surface irregularities as with coating methods. The image derived from the uncoated surface approaches in resolution that of transmission electron micrographs of thin sections. A protion of the image arising from a small distance below the surface, while at progressively lower resolution, provides some 3-dimensional information about cell fine structure.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
J. Temple Black

Since its introduction by Fernandez-Moran, the diamond knife has gained wide spread usage as a common material for cutting of thin sections of biological and metallic materials into thin films for examination in the transmission electron microscope. With the development of high voltage E.M. and scanning transmission E.M., microtomy applications will become increasingly important in the preparation of specimens. For those who can afford it, the diamond knife will thus continue to be an important tool to accomplish this effort until a cheaper but equally strong and sharp tool is found to replace the diamond, glass not withstanding.In Figs. 1 thru 3, a first attempt was made to examine the edge of a used (β=45°) diamond knife by means of the scanning electron microscope. Because diamond is conductive, first examination was tried without any coating of the diamond. However, the contamination at the edge caused severe charging during imaging. Next, a thin layer of carbon was deposited but charging was still extensive at high magnification - high voltage settings. Finally, the knife was given a light coating of gold-palladium which eliminated the charging and allowed high magnification micrographs to be made with reasonable resolution.


Author(s):  
Dr. G. Kaemof

A mixture of polycarbonate (PC) and styrene-acrylonitrile-copolymer (SAN) represents a very good example for the efficiency of electron microscopic investigations concerning the determination of optimum production procedures for high grade product properties.The following parameters have been varied:components of charge (PC : SAN 50 : 50, 60 : 40, 70 : 30), kind of compounding machine (single screw extruder, twin screw extruder, discontinuous kneader), mass-temperature (lowest and highest possible temperature).The transmission electron microscopic investigations (TEM) were carried out on ultra thin sections, the PC-phase of which was selectively etched by triethylamine.The phase transition (matrix to disperse phase) does not occur - as might be expected - at a PC to SAN ratio of 50 : 50, but at a ratio of 65 : 35. Our results show that the matrix is preferably formed by the components with the lower melting viscosity (in this special case SAN), even at concentrations of less than 50 %.


Author(s):  
J. Cadoz ◽  
J. Castaing ◽  
J. Philibert

Plastic deformation of alumina has been much studied; basal slip occurs and dislocation structures have been investigated by transmission electron microscopy (T.E.M.) (1). Non basal slip has been observed (2); the prismatic glide system <1010> {1210} has been obtained by compression tests between 1400°C and 1800°C (3). Dislocations with <0110> burgers vector were identified using a 100 kV microscope(4).We describe the dislocation structures after prismatic slip, using high voltage T.E.M. which gives much information.Compression tests were performed at constant strainrate (∿10-4s-1); the maximum deformation reached was 0.03. Thin sections were cut from specimens deformed at 1450°C, either parallel to the glide plane or perpendicular to the glide direction. After mechanical thinning, foils were produced by ion bombardment. Details on experimental techniques can be obtained through reference (3).


Author(s):  
Robert M. Fisher

By 1940, a half dozen or so commercial or home-built transmission electron microscopes were in use for studies of the ultrastructure of matter. These operated at 30-60 kV and most pioneering microscopists were preoccupied with their search for electron transparent substrates to support dispersions of particulates or bacteria for TEM examination and did not contemplate studies of bulk materials. Metallurgist H. Mahl and other physical scientists, accustomed to examining etched, deformed or machined specimens by reflected light in the optical microscope, were also highly motivated to capitalize on the superior resolution of the electron microscope. Mahl originated several methods of preparing thin oxide or lacquer impressions of surfaces that were transparent in his 50 kV TEM. The utility of replication was recognized immediately and many variations on the theme, including two-step negative-positive replicas, soon appeared. Intense development of replica techniques slowed after 1955 but important advances still occur. The availability of 100 kV instruments, advent of thin film methods for metals and ceramics and microtoming of thin sections for biological specimens largely eliminated any need to resort to replicas.


Sign in / Sign up

Export Citation Format

Share Document