Dislocations in alumina deformed by prismatic slip

Author(s):  
J. Cadoz ◽  
J. Castaing ◽  
J. Philibert

Plastic deformation of alumina has been much studied; basal slip occurs and dislocation structures have been investigated by transmission electron microscopy (T.E.M.) (1). Non basal slip has been observed (2); the prismatic glide system <1010> {1210} has been obtained by compression tests between 1400°C and 1800°C (3). Dislocations with <0110> burgers vector were identified using a 100 kV microscope(4).We describe the dislocation structures after prismatic slip, using high voltage T.E.M. which gives much information.Compression tests were performed at constant strainrate (∿10-4s-1); the maximum deformation reached was 0.03. Thin sections were cut from specimens deformed at 1450°C, either parallel to the glide plane or perpendicular to the glide direction. After mechanical thinning, foils were produced by ion bombardment. Details on experimental techniques can be obtained through reference (3).

1994 ◽  
Vol 364 ◽  
Author(s):  
Y. Q. Sun ◽  
G. Taylor ◽  
R. Darolia ◽  
P. M. Hazzledine

AbstractSlip in <111> directions is a deformation mode found in many intermetallic compounds ordered into the B2 (CsCl) structure, but in NiAl it is active only under the limiting conditions of uniaxial loading along <100> and low testing temperatures. This paper investigates the deformation characteristics of <100> oriented NiAl tested between 4.2K and 300K. Compression tests have shown that below about 100K, deformation takes place by slip in <111> directions without kinking, whereas between 100K and 300K kinking in the form of shearing on {100} becomes the dominant mode of plastic deformation, occurring usually near one or both ends of the compression samples. The yield stress has been found to exhibit a normal decrease with temperature, but at a rate that is smaller than most bcc metals. The sensitivity of the flow stress to strain-rate changes is also characteristically small, giving activation volumes around b3, b being the Burgers vector of a<111> superdislocation. Both slip line observations and transmission electron microscopy have shown slip mainly on {110} near 80K, but with increasing activity on {112} and cross-slip between {110} and {112} with the lowering of temperature to 4.2K.


Author(s):  
J. L. Daniel ◽  
S. J. Mayhan

Transmission electron microscopy of several nuclear ceramics has been extended to thin sections of as - fabricated poly-crystalline materials, by use of a thinning technique utilizing only common metallographic practices. The method is based on work by Doherty and Leombruno. However, while mechanical thinning (polishing) produces large, evenly thinned specimens, the surface of ceramic materials retains many shallow scratches and defects introduced by the polishing medium. On the other hand, the chemical thinning methods commonly applied produce only very small areas which are thin enough for examination by transmission electron microscopy, since preferential attack occurs on grain boundaries, inclusions, second phases, etc. By combining the chemical polish with the mechanical thinning procedures, large, relatively clean areas of ceramic materials can be produced. Another significant advantage is that in the course of thinning, the same specimens can be examined frequently and in detail by light microscopy, some physical measurements can be made along the way (e.g., microhardness, spectral transmission, autoradiography), and all observations can be closely correlated finally with the high resolution electron microscopy.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
J. J. Hren ◽  
W. D. Cooper ◽  
L. J. Sykes

Small dislocation loops observed by transmission electron microscopy exhibit a characteristic black-white strain contrast when observed under dynamical imaging conditions. In many cases, the topography and orientation of the image may be used to determine the nature of the loop crystallography. Two distinct but somewhat overlapping procedures have been developed for the contrast analysis and identification of small dislocation loops. One group of investigators has emphasized the use of the topography of the image as the principle tool for analysis. The major premise of this method is that the characteristic details of the image topography are dependent only on the magnitude of the dot product between the loop Burgers vector and the diffracting vector. This technique is commonly referred to as the (g•b) analysis. A second group of investigators has emphasized the use of the orientation of the direction of black-white contrast as the primary means of analysis.


2008 ◽  
Vol 600-603 ◽  
pp. 267-272 ◽  
Author(s):  
Hidekazu Tsuchida ◽  
Isaho Kamata ◽  
Masahiro Nagano

Defect formation in 4H-SiC(0001) and (000-1) epitaxy is investigated by grazing incidence synchrotron reflection X-ray topography and transmission electron microscopy. Frank-type faults, which are terminated by four Frank partials with a 1/4[0001] type Burgers vector with the same sign on four different basal planes, are confirmed to be formed by conversion of a 1c threading edge dislocation (TSD) in the substrate as well as simultaneous generation of a 1c TSD during epitaxy. The collation between the topography appearance and the microscopic structure and the variety of Frank faults are shown. Formation of carrot defects and threading dislocation clusters are also investigated.


Further experiments by transmission electron microscopy on thin sections of stainless steel deformed by small amounts have enabled extended dislocations to be observed directly. The arrangement and motion of whole and partial dislocations have been followed in detail. Many of the dislocations are found to have piled up against grain boundaries. Other observations include the formation of wide stacking faults, the interaction of dislocations with twin boundaries, and the formation of dislocations at thin edges of the foils. An estimate is made of the stacking-fault energy from a consideration of the stresses present, and the properties of the dislocations are found to be in agreement with those expected from a metal of low stacking-fault energy.


Clay Minerals ◽  
1987 ◽  
Vol 22 (2) ◽  
pp. 179-185 ◽  
Author(s):  
T. Imbert ◽  
A. Desprairies

AbstractTransmission electron microscopy of ultramicrotomed thin-sections of Pleistocene and Eocene glass shards revealed the neoformation of (i) illite and (ii) halloysite at the glass periphery. According to previous experimental studies, halloysite neoformation in marine environments can occur on glass shards deposited in Si-rich sediments; an excess of Ca tends to inhibit the reaction.


2017 ◽  
Vol 897 ◽  
pp. 173-176 ◽  
Author(s):  
Takahiro Sato ◽  
Yuya Suzuki ◽  
Hiroyuki Ito ◽  
Toshiyuki Isshiki ◽  
Kuniyasu Nakamura

The recently developed multi directional scanning transmission electron microscopy (MD-STEM) technique has been applied to exactly determine the Burgers vector (b) and dislocation vector (u) of a threading mixed dislocation in a silicon carbide (SiC) as-epitaxial wafer. This technique utilizes repeated focused ion beam (FIB) milling and STEM observation of the same dislocation from three orthogonal directions (cross-section, plan-view, cross-section). Cross section STEM observation in the [1-100] viewing direction showed that the burgers vector have a and c components. Subsequent plan view STEM observation in the [000-1] direction indicated that the b=[u -2uuw] (u≠0 and w≠0). Final cross section STEM observation in the [11-20] direction confirmed that the dislocation was an extended dislocation, with the Burgers vector experimentally found to be b = [1-210]a/3 + [0001]c which decomposes into two partial dislocations of bp1 = [0-110]a/3 + [0001]c/2 and bp2 = [1-100]a/3 + [0001]c/2. The dislocation vector u is [-12-10]a/3 + [0001]c. This technique is an effective method to analyze the dislocation characteristics of power electronics devices.


1981 ◽  
Vol 44 (335) ◽  
pp. 357-359 ◽  
Author(s):  
D. J. Barber

The advantages of polished ultra-thin sections (PUTS) in the study of very fine-grained materials, such as occur in some meteorites, have been illustrated by Fredriksson et al. (1978) whose technique is based on the earlier work of Beauchamp and WiUiford (1974). An essential feature of such methods for friable and heterogeneous materials is the use of a medium, usually an epoxy resin, to consolidate and partially impregnate them. Normally one polished side of the specimen is bonded to a glass slide during preparation, and the finished PUTS are integral with the slide on completion. PUTS are typically 2-5 microns in thickness.


2012 ◽  
Vol 190-191 ◽  
pp. 517-521
Author(s):  
Bao Guo Yuan ◽  
Qiang Chen ◽  
Hai Ping Yu ◽  
Ping Li ◽  
Ke Min Xue ◽  
...  

Compression tests of the hydrogenated Ti6Al4V0.2H alloy were carried out using an Instron 5569 machine at room temperature. True stress-strain curves of the hydrogenated Ti6Al4V0.2H alloy under different compressive strains were obtained. Microstructure evolution of the hydrogenated Ti6Al4V0.2H alloy during the process of compression was investigated by optical microscopy and transmission electron microscopy. Results show that true stress-true strain curves of Ti6Al4V0.2H alloy have good repeatability. The deformation of grains, the dislocation density and slipping evolution during the process of compression are discussed.


Sign in / Sign up

Export Citation Format

Share Document