Pathogenic and virulence characterization of colonial mutants of Nocardia asteroides GUH-2

1983 ◽  
Vol 29 (9) ◽  
pp. 1126-1135 ◽  
Author(s):  
Cynthia A. Vistica ◽  
Blaine L. Beaman

The pathogenicities in mice (comparing LD50 determinations) of two mutant strains and one wild-type strain of Nocardia asteroides GUH-2, each possessing a colonial morphology distinct from the other, were compared at respective stages of growth. Despite the three strains' colinear growth curves and similar physiological properties, unique patterns of pathogenicity emerged for each strain upon analysis. Ultrastructural and fatty acid profiles of cultures at the various growth stages were monitored. The mutant strain SCII-A1 was consistently less virulent than the other strains N. asteroides GUH-2 (SCII-P and SCII-C). Further, its fatty acid profiles as well as the shape and consistency of its colonies differed greatly from those of the wild-type strain. The fatty acid composition and the colonial morphology of strain SCII-C more closely resembled those of the parent, although its virulence was both greater than (before 28 h of growth) and less than the parent's depending upon the specific stage of growth. The comparative degrees of cellular fragmentation and complexity, as determined by scanning and transmission electron microscopy, were found to coincide with changes in relative degrees of pathogenicity.

2013 ◽  
Vol 79 (21) ◽  
pp. 6776-6783 ◽  
Author(s):  
Seiki Takeno ◽  
Manami Takasaki ◽  
Akinobu Urabayashi ◽  
Akinori Mimura ◽  
Tetsuhiro Muramatsu ◽  
...  

ABSTRACTTo date, no information has been made available on the genetic traits that lead to increased carbon flow into the fatty acid biosynthetic pathway ofCorynebacterium glutamicum. To develop basic technologies for engineering, we employed an approach that begins by isolating a fatty acid-secreting mutant without depending on mutagenic treatment. This was followed by genome analysis to characterize its genetic background. The selection of spontaneous mutants resistant to the palmitic acid ester surfactant Tween 40 resulted in the isolation of a desired mutant that produced oleic acid, suggesting that a single mutation would cause increased carbon flow down the pathway and subsequent excretion of the oversupplied fatty acid into the medium. Two additional rounds of selection of spontaneous cerulenin-resistant mutants led to increased production of the fatty acid in a stepwise manner. Whole-genome sequencing of the resulting best strain identified three specific mutations (fasR20,fasA63up, andfasA2623). Allele-specific PCR analysis showed that the mutations arose in that order. Reconstitution experiments with these mutations revealed that onlyfasR20gave rise to oleic acid production in the wild-type strain. The other two mutations contributed to an increase in oleic acid production. Deletion offasRfrom the wild-type strain led to oleic acid production as well. Reverse transcription-quantitative PCR analysis revealed that thefasR20mutation brought about upregulation of thefasAandfasBgenes encoding fatty acid synthases IA and IB, respectively, by 1.31-fold ± 0.11-fold and 1.29-fold ± 0.12-fold, respectively, and of theaccD1gene encoding the β-subunit of acetyl-CoA carboxylase by 3.56-fold ± 0.97-fold. On the other hand, thefasA63upmutation upregulated thefasAgene by 2.67-fold ± 0.16-fold. In flask cultivation with 1% glucose, thefasR20 fasA63upfasA2623triple mutant produced approximately 280 mg of fatty acids/liter, which consisted mainly of oleic acid (208 mg/liter) and palmitic acid (47 mg/liter).


2021 ◽  
Author(s):  
Shahnaz Haque

Enterohemorrhagic Escherichia coli (EHEC) 0157:H7 is a food-borne pathogen that causes hemolytic uremic syndrome and hemorrhagic colitis. The mechanisms underlying the adhesion of EHEC 0157:H7 to intestinal epithelial cells are not well understood. Like other food-borne pathogens, ECEC 0157:H7 must survive the acid stress of the gastric juice in the stomach and short chain fatty acid in the intestine in order to colonize the large intestine. We have found that acid stress and short chain fatty acid stress significantly enhance host-adhesion of EHEC 0157:H7 and also upregulates expression of EHEC fimbrial genes, lpfA1, lpfA2 and yagZ, as demonstrated by our DNA microarray. We now report that disruption of the yagZ (also known as the E. coli common pilus A) gene results in loss of the acid-induced and short chain fatty acid-induced adhesion increase seen for the wild type strain. When the yagZ mutant is complemented with yagZ, the sress-induced and short chain fatty acid-induced adhesion increase seen for the wild type strain. When the yagZ mutant is complemented with yagZ, the stress-induced adhesion pehnotype is restored, confirming the role of yagZ in the acid as well as short chain fatty acid induced adhesion to HEp-2 cells. On the other hand, neither disruption in the long polar fimbria genes lpfA1 or lpfA2 in the wild type showed any effect in adherence to HEp-2 cells; rather displaying a hyperadherant phenotype to HEp-2 cells after acid-induced or short chain fatty acid-induced stress. The results also indicate that acid or short chain fatty acid stress, which is a part of the host's natural defense mechanism against pathogens, may regulate virulence factors resulting in enhanced bacteria-host attachment during colonization in the human or bovine host.


1987 ◽  
Vol 7 (9) ◽  
pp. 3168-3177
Author(s):  
M G Schechtman

The most distal known gene on Neurospora crassa linkage group VR, his-6, was cloned. A genomic walk resulted in isolation of the telomere at VR. It was obtained from a library in which the endmost nucleotides of the chromosome had not been removed by nuclease treatment before being cloned, and mapping indicates that the entire chromosome end has probably been cloned. Sequences homologous to the terminal 2.5 kilobases of DNA from VR from these Oak Ridge N. crassa strains are found at other sites in the genome. To characterize these sites, I crossed an Oak Ridge-derived his-6 strain with a wild-type strain of different genetic background (Mauriceville) and characterized the hybridization patterns seen in the progeny. It appears that the sequences homologous to the VR terminus are found at genetically different sites in the two parental strains, and no hybridization to the VR telomere from Mauriceville was detected. The other genomic copies identified in the Oak Ridge parent were not telomeres. I suggest that any repeating sequence blocks found immediately adjacent to the VR terminus in Oak Ridge strains must be small and that the repeating element identified in that background may be an N. crassa transposable element integrated near the the chromosome end at VR.


2001 ◽  
Vol 183 (7) ◽  
pp. 2335-2342 ◽  
Author(s):  
Natalya Smirnova ◽  
Kevin A. Reynolds

ABSTRACT The Streptomyces glaucescens β-ketoacyl-acyl carrier protein (ACP) synthase III (KASIII) initiates straight- and branched-chain fatty acid biosynthesis by catalyzing the decarboxylative condensation of malonyl-ACP with different acyl-coenzyme A (CoA) primers. This KASIII has one cysteine residue, which is critical for forming an acyl-enzyme intermediate in the first step of the process. Three mutants (Cys122Ala, Cys122Ser, Cys122Gln) were created by site-directed mutagenesis. Plasmid-based expression of these mutants in S. glaucescens resulted in strains which generated 75 (Cys122Ala) to 500% (Cys122Gln) more straight-chain fatty acids (SCFA) than the corresponding wild-type strain. In contrast, plasmid-based expression of wild-type KASIII had no effect on fatty acid profiles. These observations are attributed to an uncoupling of the condensation and decarboxylation activities in these mutants (malonyl-ACP is thus converted to acetyl-ACP, a SCFA precursor). Incorporation experiments with perdeuterated acetic acid demonstrated that 9% of the palmitate pool of the wild-type strain was generated from an intact D3 acetyl-CoA starter unit, compared to 3% in a strain expressing the Cys122Gln KASIII. These observations support the intermediacy of malonyl-ACP in generating the SCFA precursor in a strain expressing this mutant. To study malonyl-ACP decarboxylase activity in vitro, the KASIII mutants were expressed and purified as His-tagged proteins in Escherichia coli and assayed. In the absence of the acyl-CoA substrate the Cys122Gln mutant and wild-type KASIII were shown to have comparable decarboxylase activities in vitro. The Cys122Ala mutant exhibited higher activity. This activity was inhibited for all enzymes by the presence of high concentrations of isobutyryl-CoA (>100 μM), a branched-chain fatty acid biosynthetic precursor. Under these conditions the mutant enzymes had no activity, while the wild-type enzyme functioned as a ketoacyl synthase. These observations indicate the likely upper and lower limits of isobutyryl-CoA and related acyl-CoA concentrations within S. glaucescens.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Lei Zhu ◽  
Qi Zou ◽  
Xinyun Cao ◽  
John E. Cronan

ABSTRACTAcyl carrier proteins (ACPs) play essential roles in the synthesis of fatty acids and transfer of long fatty acyl chains into complex lipids. TheEnterococcus faecalisgenome contains two annotatedacpgenes, calledacpAandacpB. AcpA is encoded within the fatty acid synthesis (fab) operon and appears essential. In contrast, AcpB is an atypical ACP, having only 30% residue identity with AcpA, and is not essential. Deletion ofacpBhas no effect onE. faecalisgrowth orde novofatty acid synthesis in media lacking fatty acids. However, unlike the wild-type strain, where growth with oleic acid resulted in almost complete blockage ofde novofatty acid synthesis, theΔacpBstrain largely continuedde novofatty acid synthesis under these conditions. Blockage in the wild-type strain is due to repression offaboperon transcription, leading to levels of fatty acid synthetic proteins (including AcpA) that are insufficient to supportde novosynthesis. Transcription of thefaboperon is regulated by FabT, a repressor protein that binds DNA only when it is bound to an acyl-ACP ligand. Since AcpA is encoded in thefaboperon, its synthesis is blocked when the operon is repressed andacpAthus cannot provide a stable supply of ACP for synthesis of the acyl-ACP ligand required for DNA binding by FabT. In contrast to AcpA,acpBtranscription is unaffected by growth with exogenous fatty acids and thus provides a stable supply of ACP for conversion to the acyl-ACP ligand required for repression by FabT. Indeed,ΔacpBandΔfabTstrains have essentially the samede novofatty acid synthesis phenotype in oleic acid-grown cultures, which argues that neither strain can form the FabT-acyl-ACP repression complex. Finally, acylated derivatives of both AcpB and AcpA were substrates for theE. faecalisenoyl-ACP reductases and forE. faecalisPlsX (acyl-ACP; phosphate acyltransferase).IMPORTANCEAcpB homologs are encoded by many, but not all, lactic acid bacteria (Lactobacillales), including many members of the human microbiome. The mechanisms regulating fatty acid synthesis by exogenous fatty acids play a key role in resistance of these bacteria to those antimicrobials targeted at fatty acid synthesis enzymes. Defective regulation can increase resistance to such inhibitors and also reduce pathogenesis.


1982 ◽  
Vol 152 (2) ◽  
pp. 676-681
Author(s):  
J P Simon ◽  
V Stalon

Streptococcus faecalis ATCC 11700 uses agmatine as its sole energy source for growth. Agmatine deiminase and putrescine carbamoyltransferase are coinduced by growth on agmatine. Glucose and arginine were found to exert catabolite repression on the agmatine deiminase pathway. Four mutants unable to utilize agmatine as an energy source, isolated from the wild-type strain, exhibited three distinct phenotypes. Two of these strains showed essentially no agmatine deiminase, one mutant showed negligible activity of putrescine carbamoyltransferase, and one mutant was defective in both activities. Two carbamate kinases are present in S. faecalis, one belonging to the arginine deiminase pathway, the other being induced by growth on agmatine. These two enzymes have the same molecular weight, 82,000, and seem quite different in size from the kinases isolated from other streptococci.


1983 ◽  
Vol 212 (1) ◽  
pp. 205-210 ◽  
Author(s):  
P Maruthi Mohan ◽  
K Sivarama Sastry

Three different Ni2+-resistant strains of Neurospora crassa (NiR1, NiR2 and NiR3) have been isolated. All are stable mutants and are fourfold more resistant to Ni2+ than the parent wild-type strain. NiR1 and NiR2 are also sixfold more resistant to Co2+, whereas NiR3 is only twice as resistant to Co2+; the former two are also twofold more resistant to Zn2+, but NiR3 is not. These three strains also differ in sensitivity to Cu2+. Toxicities and concomitant accumulation patterns of Ni2+, Co2+ and Cu2+ have been examined in these strains. NiR1 and NiR2, despite quantitative individual differences, generally accumulate very high amounts of Ni2+ and Co2+, and Mg2+ reverses the toxicities of these two ions by different mechanisms; Ni2+ uptake is suppressed, but not that of Co2+. In NiR3, Mg2+ controls uptake of both Ni2+ and Co2+. Studies indicate that two kinds of Ni2+-resistant strains of N. crassa exist; one kind is resistant because it can tolerate high intracellular concentrations of heavy-metal ions, whereas the other is resistant because it can control metal-ion accumulation.


1976 ◽  
Vol 160 (2) ◽  
pp. 137-145 ◽  
Author(s):  
M Cannon ◽  
A Jimenez ◽  
D Vazquez

1. Of the five sesquiterpene antibiotics tested and found to inhibit protein synthesis in yeast spheroplasts, trichothecin, trichodermol or trichodermin stabilized polyribosomes whereas, in contrast, verrucarin A or T-2 toxin induced ‘run off’ of polyribosomes with a corresponding increase in 80S monoribosomes. The effect of fusarenon X on the system could not be determined as the drug failed to enter the cells. 2. [acetyl-14C]Trichodermin bound to yeast polyribosomes with a dissociation constant of 2.10 muM and to yeast ‘run off’ ribosomes with a dissociation constant of 0.72 muM. 3. Trichothecin, trichodermol, fusarenon X, T-2 toxin and verrucarin A competed with [acetyl-14C]trichodermin for binding to its receptor site on ‘run off’ ribosomes. The observed competition was quantitatively similar for all drugs tested. In contrast, the five drugs competed to different extents with trichodermin for binding to its receptor site on polyribosomes. Thus trichothecin competed with relative efficiency, whereas verrucarin A competed poorly, and the other drugs occupied intermediate positions between these two extremes. 4. Studies were also carried out with yeast ‘run off’ ribosomes prepared from both a wild-type strain and a strain resistant to trichodermin. Competition experiments between verrucarin A and [3H]anisomycin indicated that verrucarin A bound to ‘run off’ ribosomes from the mutant strain less efficiently than to those from the wild-type.


2020 ◽  
Author(s):  
Rafael Montenegro ◽  
Sofía Vieto ◽  
Daniela Wicki-Emmenegger ◽  
Felipe Vásquez-Castro ◽  
Carolina Coronado-Ruiz ◽  
...  

AbstractTellurium oxyanions are chemical species with great toxicity; their presence in the environment has increased because of mining industries and photovoltaic and electronic waste. Recovery strategies based on microorganisms for this metalloid are of interest, but further studies of the transport systems and enzymes responsible for implementing tellurium transformations are required because many mechanisms remain unknown. Here, we investigated the involvement in tellurite uptake of the putative phosphate transporter PitB (PP1373) in soil bacterium Pseudomonas putida KT2440. For this purpose, through a method based on the CRISPR/Cas9 system, we generated a strain deficient in pitB gene and characterized its phenotype on exposing it to varied concentrations of tellurite. Growth curves and Transmission Electronic Microscopy experiments of wild type and ΔpitB showed that both strains were able to internalize tellurite into the cytoplasm and reduce the oxyanion to black nano-sized and rod-shaped tellurium particles, however, ΔpitB strain showed an increased resistance to the tellurite toxic effects. At a concentration of 100 uM tellurite, where the biomass formation of wild type strain decreased by half, we observed a greater ability of ΔpitB to reduce this oxyanion with respect to wild type strain (~38% vs ~16%), which is related by the greater biomass production of ΔpitB and not by a greater consumption of tellurite per cell. The phenotype of the mutant was restored on over-expressing pitB in trans. In summary, our results indicate that PitB is one of several transporters responsible for tellurite uptake in P. putida KT2440.


2007 ◽  
Vol 189 (24) ◽  
pp. 9117-9121 ◽  
Author(s):  
Elizabeth M. Widenbrant ◽  
Hsiu-Hui Tsai ◽  
Carton W. Chen ◽  
Camilla M. Kao

ABSTRACT We report a previously unobserved form of genetic instability for Streptomyces coelicolor, the replacement of one chromosome end by the other end. These genetic changes occurred spontaneously in both a wild-type strain and strains harboring a foreign transposon. Deleted and duplicated DNA comprises up to 33% of the genome.


Sign in / Sign up

Export Citation Format

Share Document