Interaction of Laterispora brevirama and the mycoparasites Sporidesmium sclerotivorum and Teratosperma oligocladum

1985 ◽  
Vol 31 (9) ◽  
pp. 786-792 ◽  
Author(s):  
W. A. Ayers ◽  
P. B. Adams

Laterispora brevirama, a fungus found in association with the Sclerotinia mycoparasites Sporidesmium sclerotivorum and Teratosperma oligocladum, was markedly similar in morphology to the other two fungi yet differed in its parasitic activity. Laterispora brevirama colonized and proliferated on sclerotia of Sclerotinia minor which had been infected first by Sporidesmium sclerotivorum or T. oligocladum but did not do so in the absence of these specific mycoparasites. Macroconidia of L. brevirama germinated in soil in response to sclerotia infected by Sporidesmium sclerotivorum, and to hyphae of Sporidesmium sclerotivorum. Aqueous extracts of hyphal mats of Sporidesmium sclerotivorum stimulated maximal germination of macroconidia in vitro, although other nutrients also supported germination to a lesser extent. In culture and in its parasitic phase in soil, L. brevirama formed specialized contact cells on the hyphae of Sporidesmium sclerotivorum and T. oligocladum, but never appeared to invade hyphae. Laterispora brevirama added to soil at 1000 macroconidia/g, along with Sporidesmium sclerotivorum at the same concentration, did not influence the rate of infection and destruction of sclerotia of Sclerotinia minor by Sporidesmium sclerotivorum. The resulting numbers of new macroconidia of Sporidesmium sclerotivorum formed in the soil from energy derived from the infected sclerotia, however, were reduced by the presence of L. brevirama. Laterispora brevirama is either a direct parasite of Sporidesmium sclerotivorum and T. oligocladum or is a secondary parasite of Sclerotinia spp. that is active only in association with either of the two primary mycoparasites.

Parasitology ◽  
2019 ◽  
Vol 146 (6) ◽  
pp. 828-836 ◽  
Author(s):  
Carly D. Barone ◽  
Anne M. Zajac ◽  
Sarah M. Ferguson ◽  
Rebecca N. Brown ◽  
Jess D. Reed ◽  
...  

AbstractSecondary plant compounds have shown bioactivity against multi-drug resistant Haemonchus contortus in small ruminants. This study screened 51 strains of birdsfoot trefoil (BFT, Lotus corniculatus) crude aqueous extracts (BFT-AqE) for anti-parasitic activity in vitro against egg hatching, and of those 51 strains, 13 were selected for further testing of motility of first (L1) and third stage (L3) larvae, and exsheathment of L3. Proanthocyanidin content ranged between 1.4 and 63.8 mg PAC g−1 powder across the 51 BFT strains. When tested against egg hatching, 21 of the 51 aqueous extracts had an EC50 of 1–2 mg powder mL−1, 70% of the strains were >90% efficacious at 6 mg powder mL−1 and 11 of the strains were 100% efficacious at 3 mg powder mL−1 BFT-AqE. Across the 13 strains tested against L3, efficacy ranged from 0 to 75% exsheathment inhibition, and 17 to 92% L3 motility inhibition at a concentration of 25 mg powder mL−1 BFT-AqE. There was no correlation between the PAC content of BFT powders and the anti-parasitic activity of aqueous extracts, therefore other secondary compounds may have contributed to the observed anti-parasitic effects. Further testing of BFT using bioactivity-driven fractionation and screening of BFT populations for the identified anti-parasitic compounds is needed.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Sara Elena Hernández-Guerrero ◽  
Rosendo Balois-Morales ◽  
Pedro Ulises Bautista-Rosales ◽  
Graciela Guadalupe López-Guzmán ◽  
Guillermo Berumen-Varela ◽  
...  

Fruit and vegetable products are susceptible to the attack of fungi during postharvest handling. Chemical fungicides are the most commonly used technique to control fungal diseases. However, an alternative product is the use of plant extracts, which have been reported in in vitro and in vivo conditions. The objective of this investigation was to identify one of the main pathogens of mango and soursop fruits using morphological and molecular tools as well as to evaluate the in vitro inhibitory effect of papaya and soursop leaf and seed extracts. Two pathogens were isolated and identified by their morphological and molecular characteristics from mango and soursop fruits. We obtained extracts from leaves and seeds of soursop and papaya using five solvents of increasing polarity (hexane, acetone, ethanol, methanol, and water) through the ultrasound-assisted extraction technique at a frequency of 35 kHz and 160 W for 14 min. In vitro evaluations of the extracts were performed using the Kirby–Bauer technique. The extracts with the highest percentage of inhibition were analyzed qualitatively and quantitatively using standardized techniques of colorimetry and spectrophotometry. Furthermore, we determined the content of total phenols, flavonoids, alkaloids, terpenoids, anthraquinones, coumarins, and saponins. As a result, we identified the pathogens as Colletotrichum fructicola and Nectria haematococca. Aqueous extracts (water as a solvent) showed a higher percentage of inhibition of both pathogens compared with the other extracts. Furthermore, the aqueous extract of papaya leaf was the most effective among all extracts. The aqueous papaya leaf extract exhibited a percentage of inhibition of 49.86% for C. fructicola and 47.89% for N. haematococca. The aqueous extracts of papaya leaf and seed (AqEPL and AqEPS) presented the greatest amount of metabolites (except anthraquinones and coumarins). The aqueous soursop leaf extract (AqESL) presented the greatest amount of phenols, tannins, and flavonoids (219.14 ± 8.52 mg GAE/L, 159.84 ± 10 mg GAE/g dm and 0.13 ± 1.12 × 10−4, respectively). The aqueous soursop seed extract (AqESS) had the highest saponin content with 1.2 ± 0.1 mg QSES/g dm and the papaya leaf accusative extract (AqEPL) had the highest alkaloid content (6.413 ± 1 × 10−3 mg AE/g dm) compared with the other extracts. The AqESS had a lower content of secondary metabolites (sterols, alkaloids, and saponins), while AqESL showed no presence of alkaloids and coumarins.


Plant Disease ◽  
2010 ◽  
Vol 94 (8) ◽  
pp. 986-992 ◽  
Author(s):  
Patcharavipa Chaijuckam ◽  
R. Michael Davis

Aqueous extracts from ginger, pepper, basil, and garlic plants and essential oils from neem, garlic, lemongrass, and cinnamon were evaluated for their antagonistic effects against Rhizoctonia oryzae-sativae, the cause of aggregate sheath spot of rice. The compounds in 5% concentrations in water or agar were tested on several R. oryzae-sativae isolates. Cinnamon oil, the most efficacious plant product in vitro, was further tested in the greenhouse for the control of the disease on two rice cultivars inoculated with R. oryzae-sativae. One milliliter of each of four cinnamon oil concentrations (12.5, 37.5, 62.5, or 87.5%) diluted in vegetable oil was applied to the surface of the water in constantly flooded pots. Cinnamon oil failed to reduce the disease caused by one of the isolates at any concentration. Cinnamon oil suppressed the disease caused by the other isolate on one of the cultivars at a concentration of 37.5%, and on both cultivars at a concentration of 62.5 and 87.5%. However, cinnamon oil at 87.5% was phytotoxic. Cinnamon oil has potential to control aggregate sheath spot but relatively high concentrations were required for disease suppression.


1973 ◽  
Vol 29 (02) ◽  
pp. 490-498 ◽  
Author(s):  
Hiroh Yamazaki ◽  
Itsuro Kobayashi ◽  
Tadahiro Sano ◽  
Takio Shimamoto

SummaryThe authors previously reported a transient decrease in adhesive platelet count and an enhancement of blood coagulability after administration of a small amount of adrenaline (0.1-1 µg per Kg, i. v.) in man and rabbit. In such circumstances, the sensitivity of platelets to aggregation induced by ADP was studied by an optical density method. Five minutes after i. v. injection of 1 µg per Kg of adrenaline in 10 rabbits, intensity of platelet aggregation increased to 115.1 ± 4.9% (mean ± S. E.) by 10∼5 molar, 121.8 ± 7.8% by 3 × 10-6 molar and 129.4 ± 12.8% of the value before the injection by 10”6 molar ADP. The difference was statistically significant (P<0.01-0.05). The above change was not observed in each group of rabbits injected with saline, 1 µg per Kg of 1-noradrenaline or 0.1 and 10 µg per Kg of adrenaline. Also, it was prevented by oral administration of 10 mg per Kg of phenoxybenzamine or propranolol or aspirin or pyridinolcarbamate 3 hours before the challenge. On the other hand, the enhancement of ADP-induced platelet aggregation was not observed in vitro, when 10-5 or 3 × 10-6 molar and 129.4 ± 12.8% of the value before 10∼6 molar ADP was added to citrated platelet rich plasma (CPRP) of rabbit after incubation at 37°C for 30 second with 0.01, 0.1, 1, 10 or 100 µg per ml of adrenaline or noradrenaline. These results suggest an important interaction between endothelial surface and platelets in connection with the enhancement of ADP-induced platelet aggregation by adrenaline in vivo.


1965 ◽  
Vol 50 (2) ◽  
pp. 301-309 ◽  
Author(s):  
Jürg Müller

ABSTRACT An extract of human urine, which was previously shown to stimulate aldosterone production by rat adrenal sections, was further purified. Evidence was obtained that its aldosterone-stimulating effect was due to the presence of ammonium ions. Addition of ammonium chloride and of urine extract to the incubation medium caused identical increases in aldosterone production in vitro. In addition to ammonium ions, rubidium and caesium ions also stimulated aldosterone production up to 250% that of control values without a significant effect on corticosterone production. Similar dose-response curves were obtained when increasing concentrations of potassium, ammonium, rubidium and caesium ions were tested. Aldosterone production was maximal at concentrations of 7 mval/1 and was significantly lower at higher concentrations. When ammonium chloride and ACTH were simultaneously added to the incubation medium, the production of aldosterone and of corticosterone was lower than with ACTH alone. On the other hand, the stimulating activity on aldosterone and corticosterone production by »TPN« (NADP) and glucose-6-phosphate was enhanced by the simultaneous addition of ammonium chloride.


1974 ◽  
Vol 77 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Gustav Wägar

ABSTRACT Whether the short-term regulation of thyroidal protein synthesis by TSH occurs at the transcriptional or the translational level was tested by measuring the effect of actinomycin D (act D) on the TSH-induced stimulation of L-14C-leucine incorporation into the thyroidal proteins of rats. TSH was injected 6 h before the rats were killed. The thyroid glands were then removed and incubated in vitro in the presence of L-14C-leucine for 2 h. The pronounced stimulation of leucine incorporation in the TSH-treated animals was depressed as compared with controls but still significant even when the animals had been pre-treated with 100 μg act D 24 and 7 h before sacrifice. On the other hand, act D strongly decreased incorporation of 3H-uridine into RNA. Short-term regulation of thyroidal protein synthesis by TSH appears to be partly but not wholly dependent on neosynthesis of RNA. Hence regulation may partly occur at the translation level of protein synthesis.


Imbizo ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Naomi Epongse Nkealah ◽  
Olutoba Gboyega Oluwasuji

Ideas of nationalisms as masculine projects dominate literary texts by African male writers. The texts mirror the ways in which gender differentiation sanctions nationalist discourses and in turn how nationalist discourses reinforce gender hierarchies. This article draws on theoretical insights from the work of Anne McClintock and Elleke Boehmer to analyse two plays: Zintgraff and the Battle of Mankon by Bole Butake and Gilbert Doho and Hard Choice by Sunnie Ododo. The article argues that women are represented in these two plays as having an ambiguous relationship to nationalism. On the one hand, women are seen actively changing the face of politics in their societies, but on the other hand, the means by which they do so reduces them to stereotypes of their gender.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 557d-557
Author(s):  
Jennifer Warr ◽  
Fenny Dane ◽  
Bob Ebel

C6 volatile compounds are known to be produced by the plant upon pathogen attack or other stress-related events. The biological activity of many of these substances is poorly understood, but some might produce signal molecules important in host–pathogen interactions. In this research we explored the possibility that lipid-derived C6 volatiles have a direct effect on bacterial plant pathogens. To this purpose we used a unique tool, a bacterium genetically engineered to bioluminesce. Light-producing genes from a fish-associated bacterium were introduced into Xanthomonas campestris pv. campestris, enabling nondestructive detection of bacteria in vitro and in the plant with special computer-assisted camera equipment. The effects of different C6 volatiles (trans-2 hexanal, trans-2 hexen-1-ol and cis-3 hexenol) on growth of bioluminescent Xanthomonas campestris were investigated. Different volatile concentrations were used. Treatment with trans-2 hexanal appeared bactericidal at low concentrations (1% and 10%), while treatments with the other volatiles were not inhibitive to bacterial growth. The implications of these results with respect to practical use of trans-2 hexanal in pathogen susceptible and resistant plants will be discussed.


1987 ◽  
Vol 52 (9) ◽  
pp. 2317-2325 ◽  
Author(s):  
Jan Hlaváček ◽  
Jan Pospíšek ◽  
Jiřina Slaninová ◽  
Walter Y. Chan ◽  
Victor J. Hruby

[8-Neopentylglycine]oxytocin (II) and [8-cycloleucine]oxytocin (III) were prepared by a combination of solid-phase synthesis and fragment condensation. Both analogues exhibited decreased uterotonic potency in vitro, each being about 15-30% that of oxytocin. Analogue II also displayed similarly decreased uterotonic potency in vivo and galactogogic potency. On the other hand, analogue III exhibited almost the same potency as oxytocin in the uterotonic assay in vivo and in the galactogogic assay.


1997 ◽  
Vol 62 (11) ◽  
pp. 1804-1814 ◽  
Author(s):  
Marie Stiborová ◽  
Hana Hansíková

Tulip bulbs (Tulipa fosteriana, L.) contain peroxidases catalyzing the oxidation of the xenobiotics N-nitrosodimethylamine (NDMA) and N-nitroso-N-methylaniline (NMA). Three anionic (A1, A2, A3) and four cationic (B, C, D, E) peroxidases were purified from this tissue, partially characterized and used for kinetic studies. Demethylation of NDMA and NMA producing formaldehyde is catalyzed by one anionic (A1) and three cationic (C, D, E) peroxidases. The oxidation of NDMA by tulip peroxidases exhibits the Michaelis-Menten kinetics. The apparent Michaelis constant and the maximal velocity values for this substrate were determined. On the other hand, non-Michaelian kinetics for the NMA oxidation were observed with tulip peroxidases. The most abundant cationic peroxidase (peroxidase C) was used for detailed enzymatic studies. In addition to formation of formaldehyde, methylaniline, aniline, 4-aminophenol and phenol were found to be metabolites formed from NMA. Phenol was formed presumably by N-demethylation via a benzenediazonium ion, while methylaniline, aniline and 4-aminophenol were products of denitrosation of the substrate. The efficiencies of plant peroxidases to oxidize NDMA and NMA in vitro are compared with those of cytochromes P450 and discussed.


Sign in / Sign up

Export Citation Format

Share Document