Stress proteins and thermotolerance in psychrotrophic yeasts from arctic environments

1987 ◽  
Vol 33 (5) ◽  
pp. 383-389 ◽  
Author(s):  
Gary R. Berg ◽  
William E. Inniss ◽  
John J. Heikkila

The protein synthetic responses to heat shock of two psychrotrophic yeasts Trichosporon pullulans and Sporobolomyces salmonicolor, isolated from the Arctic, were examined. The temperature of maximum heat shock protein induction was above the maximum temperature for growth in Trichosporon pullulans, but was within the physiological range in Sporobolomyces salmonicolor. Heat shock protein synthetic rates remained elevated in both microorganisms for at least 4 h when the temperature used for heat shock was within the physiological growth range. Both of these nonfermentative yeasts showed a protein synthetic response to recovery from anaerobiosis similar to that shown to heat shock. Trichosporon pullulans failed to show any increased resistance to a lethal thermal stress concomitant with the induction of stress proteins due to heat shock or recovery from anoxia.

2004 ◽  
Vol 16 (1) ◽  
pp. 23-28 ◽  
Author(s):  
ANTONIETTA LA TERZA ◽  
CRISTINA MICELI ◽  
PIERANGELO LUPORINI

In the Antarctic ciliate, Euplotes focardii, the heat-shock protein 70 (Hsp70) gene does not show any appreciable activation by a thermal stress. Yet, it is activated to appreciable transcriptional levels by oxidative and chemical stresses, thus implying that it evolved a mechanism of selective, stress-specific response. A basic step in investigating this mechanism is the determination of the complete nucleotide sequence of the E. focardii Hsp70 gene. This gene contains a coding region specific for an Hsp70 protein that carries unique amino acid substitutions of potential significance for cold adaptation, and a 5' regulatory region that includes sequence motifs denoting two distinct types of stress-inducible promoters, known as “Heat Shock Elements” (HSE) and “Stress Response Elements” (StRE). From the study of the interactions of these regulatory elements with their specific transactivator factors we expect to shed light on the adaptive modifications that prevent the Hsp70 gene of E. focardii from responding to thermal stress while being responsive to other stresses.


Genome ◽  
1991 ◽  
Vol 34 (6) ◽  
pp. 940-943 ◽  
Author(s):  
Daryl J. Somers ◽  
Randal W. Giroux ◽  
W. Gary Filion

Opuntia ficus indica roots grown hydroponically at 20 or 30 °C were subjected to a range of heat-shock temperatures as high as 50 °C for 2 h. Roots grown at 30 °C sustained a greater level of total protein synthesis than did 20 °C-grown roots following heat-shock treatments ≥ 45 °C. The 30 °C-grown roots synthesized 31 families of heat-shock proteins between 38 and 47 °C in comparison with 20 °C-grown roots, which synthesized 19 families of heat-shock proteins at 45 °C. In both groups of roots, the heat-shock response was dominated equally by the 71–75 and a 62 kDa heat-shock protein families. In addition, the 20 °C-grown roots expressed 11 families of cold-shock proteins following 2 h at 4 °C, five of which had similar relative molecular masses to heat-shock protein families. There were numerous qualitative differences in the heat shock protein profiles between the roots grown at 20 and 30 °C; the 30 °C-grown roots expressed several unique heat shock protein families.Key words: heat-shock protein(s), cactus, thermal stress, acclimation.


2017 ◽  
Vol 37 (24) ◽  
Author(s):  
Surabhi Chowdhary ◽  
Amoldeep S. Kainth ◽  
David S. Gross

ABSTRACT Three-dimensional (3D) chromatin organization is important for proper gene regulation, yet how the genome is remodeled in response to stress is largely unknown. Here, we use a highly sensitive version of chromosome conformation capture in combination with fluorescence microscopy to investigate Heat Shock Protein (HSP) gene conformation and 3D nuclear organization in budding yeast. In response to acute thermal stress, HSP genes undergo intense intragenic folding interactions that go well beyond 5′-3′ gene looping previously described for RNA polymerase II genes. These interactions include looping between upstream activation sequence (UAS) and promoter elements, promoter and terminator regions, and regulatory and coding regions (gene “crumpling”). They are also dynamic, being prominent within 60 s, peaking within 2.5 min, and attenuating within 30 min, and correlate with HSP gene transcriptional activity. With similarly striking kinetics, activated HSP genes, both chromosomally linked and unlinked, coalesce into discrete intranuclear foci. Constitutively transcribed genes also loop and crumple yet fail to coalesce. Notably, a missense mutation in transcription factor TFIIB suppresses gene looping, yet neither crumpling nor HSP gene coalescence is affected. An inactivating promoter mutation, in contrast, obviates all three. Our results provide evidence for widespread, transcription-associated gene crumpling and demonstrate the de novo assembly and disassembly of HSP gene foci.


2011 ◽  
Vol 5 ◽  
pp. JEN.S6280 ◽  
Author(s):  
Awoyemi A. Awofala ◽  
Susan Jones ◽  
Jane A. Davies

Stress plays an important role in drug- and addiction-related behaviours. However, the mechanisms underlying these behavioural responses are still poorly understood. In the light of recent reports that show consistent regulation of many genes encoding stress proteins including heat shock proteins following ethanol exposure in Drosophila, it was hypothesised that transition to alcohol dependence may involve the dysregulation of the circuits that mediate behavioural responses to stressors. Thus, behavioural genetic methodologies were used to investigate the role of the Drosophila hsp26 gene, a small heat shock protein coding gene which is induced in response to various stresses, in the development of rapid tolerance to ethanol sedation. Rapid tolerance was quantified as the percentage difference in the mean sedation times between the second and first ethanol exposure. Two independently isolated P-element mutations near the hsp26 gene eliminated the capacity for tolerance. In addition, RNAi-mediated functional knockdown of hsp26 expression in the glial cells and the whole nervous system also caused a defect in tolerance development. The rapid tolerance phenotype of the hsp26 mutants was rescued by the expression of the wild-type hsp26 gene in the nervous system. None of these manipulations of the hsp26 gene caused changes in the rate of ethanol absorption. Hsp26 genes are evolutionary conserved, thus the role of hsp26 in ethanol tolerance may present a new direction for research into alcohol dependency.


1990 ◽  
Vol 68 (7-8) ◽  
pp. 1057-1061 ◽  
Author(s):  
Devki Nandan ◽  
Eric H. Ball ◽  
Bishnu D. Sanwal

A differentiation-related gelatin-binding 46 kilodalton (kDa) glycoprotein in myoblasts (GP46, colligin) shares several properties with the 78-kDa glucose-regulated protein (GRP78), including location in the endoplasmic reticulum and related C-terminal sequences. These similarities extend to stress inducibility, since we find that GP46 is a heat-shock protein; its synthesis is elevated at 42 °C, resulting in a two- to three-fold increase in protein level. Further, GRP78 is a gelatin-binding protein; together with GP46 it is retained on gelatin–Sepharose beads. GRP78 and GP46 do not interact; each protein can be individually eluted, GP46 at low pH and GRP78 by ATP. These results suggest that the proteins have distinct roles in the synthesis of collagen and point to a simple method for purification.Key words: stress proteins, collagen-binding proteins, endoplasmic reticulum, 78-kilodalton glucose-regulated protein, 46-kilodalton glycoprotein.


1984 ◽  
Vol 62 (9) ◽  
pp. 837-846 ◽  
Author(s):  
Herb B. LéJohn ◽  
Cleantis E. Braithwaite

When the temperature of exponentially growing cells of the coenocytic fungus Achlya klebsiana strain 1969 was suddenly elevated from 24 to 37 °C (thermal stress), synthesis of at least 12 preexisting proteins (heat-shock proteins, HSPs) was vigorously induced while synthesis of most other cell proteins declined transiently. After 2–3 h of thermal stress, the cells recovered and resumed normal protein synthesis. If the cells were first starved of nutrients (nutritional stress) before the temperature was raised to 37 °C, the same 12 HSPs were induced, but synthesis of both heat-shock-inducible and nonheat-shock proteins declined to trace levels after 4 h of thermal stress. Molecular weights (MW) of the HSPs were approximately 96 000a, 96 000b, 85 000, 72 000, 70 000, 69 000a, 69 000b, 68 000, 60 000, 52 000, 26 000a, and 26 000b, and they had similar isoelectric points (5.8–6.2). Nutritionally stressed cells showed an induced synthesis of some 28 proteins (nutritional stress proteins, NSPs), when they were not heat shocked, and an induced synthesis of 20 NSPs when heat shocked. In the presence of glutamine, nutritionally stressed cells induced the synthesis of 15 NSPs when they were not heat shocked and 17 NSPs when they were heat shocked. The NSPs and HSPs were electrophoretically different proteins. Glutamine did not affect the induction pattern of the HSPs, but it arrested reproductive development of starving cells while altering the pattern of NSP synthesis. Since actinomycin D inhibited the induced synthesis of HSPs and some NSPs, they may be under transcriptional control. In vitro translation of poly(A)+ RNAs from heat-shocked cells showed that these cells were rich in HSP mRNAs and poor in NSP mRNAs. We speculate that NSPs, but not HSPs, may play a role in reproductive development and sporulation in this fungus.


Sign in / Sign up

Export Citation Format

Share Document