Linker histone function in chromatin: Dual mechanisms of action

2001 ◽  
Vol 79 (3) ◽  
pp. 313-316 ◽  
Author(s):  
Philippe T Georgel ◽  
Jeffrey C Hansen

Aspects pertaining to linker histone structure and function are discussed, including the extent to which these proteins are essential, their ability to regulate specific gene expression, and recent structural data that provides a potential molecular basis for understanding how linker histones can have both repressive and stimulatory effects on genomic functions in vivo.Key words: chromatin, linker histone, higher-order folding.

2017 ◽  
Vol 95 (2) ◽  
pp. 171-178 ◽  
Author(s):  
Amber R. Cutter ◽  
Jeffrey J. Hayes

Linker histones (H1s) are a primary component of metazoan chromatin, fulfilling numerous functions, both in vitro and in vivo, including stabilizing the wrapping of DNA around the nucleosome, promoting folding and assembly of higher order chromatin structures, influencing nucleosome spacing on DNA, and regulating specific gene expression. However, many molecular details of how H1 binds to nucleosomes and recognizes unique structural features on the nucleosome surface remain undefined. Numerous, confounding studies are complicated not only by experimental limitations, but the use of different linker histone isoforms and nucleosome constructions. This review summarizes the decades of research that has resulted in several models of H1 association with nucleosomes, with a focus on recent advances that suggest multiple modes of H1 interaction in chromatin, while highlighting the remaining questions.


2004 ◽  
Vol 18 (2) ◽  
pp. 167-183 ◽  
Author(s):  
Jianhua Zhang ◽  
Amy Moseley ◽  
Anil G. Jegga ◽  
Ashima Gupta ◽  
David P. Witte ◽  
...  

To understand the commitment of the genome to nervous system differentiation and function, we sought to compare nervous system gene expression to that of a wide variety of other tissues by gene expression database construction and mining. Gene expression profiles of 10 different adult nervous tissues were compared with that of 72 other tissues. Using ANOVA, we identified 1,361 genes whose expression was higher in the nervous system than other organs and, separately, 600 genes whose expression was at least threefold higher in one or more regions of the nervous system compared with their median expression across all organs. Of the 600 genes, 381 overlapped with the 1,361-gene list. Limited in situ gene expression analysis confirmed that identified genes did represent nervous system-enriched gene expression, and we therefore sought to evaluate the validity and significance of these top-ranked nervous system genes using known gene literature and gene ontology categorization criteria. Diverse functional categories were present in the 381 genes, including genes involved in intracellular signaling, cytoskeleton structure and function, enzymes, RNA metabolism and transcription, membrane proteins, as well as cell differentiation, death, proliferation, and division. We searched existing public sites and identified 110 known genes related to mental retardation, neurological disease, and neurodegeneration. Twenty-one of the 381 genes were within the 110-gene list, compared with a random expectation of 5. This suggests that the 381 genes provide a candidate set for further analyses in neurological and psychiatric disease studies and that as a field, we are as yet, far from a large-scale understanding of the genes that are critical for nervous system structure and function. Together, our data indicate the power of profiling an individual biologic system in a multisystem context to gain insight into the genomic basis of its structure and function.


2017 ◽  
Vol 63 (2) ◽  
pp. 89-99 ◽  
Author(s):  
Maria C. Davis ◽  
Christopher A. Kesthely ◽  
Emily A. Franklin ◽  
Shawn R. MacLellan

Transcription is the first and most heavily regulated step in gene expression. Sigma (σ) factors are general transcription factors that reversibly bind RNA polymerase (RNAP) and mediate transcription of all genes in bacteria. σ Factors play 3 major roles in the RNA synthesis initiation process: they (i) target RNAP holoenzyme to specific promoters, (ii) melt a region of double-stranded promoter DNA and stabilize it as a single-stranded open complex, and (iii) interact with other DNA-binding transcription factors to contribute complexity to gene expression regulation schemes. Recent structural studies have demonstrated that when σ factors bind promoter DNA, they capture 1 or more nucleotides that are flipped out of the helical DNA stack and this stabilizes the promoter open-complex intermediate that is required for the initiation of RNA synthesis. This review describes the structure and function of the σ70 family of σ proteins and the essential roles they play in the transcription process.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kseniya Obraztsova ◽  
Maria C. Basil ◽  
Ryan Rue ◽  
Aravind Sivakumar ◽  
Susan M. Lin ◽  
...  

Abstract Lymphangioleiomyomatosis (LAM) is a rare fatal cystic lung disease due to bi-allelic inactivating mutations in tuberous sclerosis complex (TSC1/TSC2) genes coding for suppressors of the mechanistic target of rapamycin complex 1 (mTORC1). The origin of LAM cells is still unknown. Here, we profile a LAM lung compared to an age- and sex-matched healthy control lung as a hypothesis-generating approach to identify cell subtypes that are specific to LAM. Our single-cell RNA sequencing (scRNA-seq) analysis reveals novel mesenchymal and transitional alveolar epithelial states unique to LAM lung. This analysis identifies a mesenchymal cell hub coordinating the LAM disease phenotype. Mesenchymal-restricted deletion of Tsc2 in the mouse lung produces a mTORC1-driven pulmonary phenotype, with a progressive disruption of alveolar structure, a decline in pulmonary function, increase of rapamycin-sensitive expression of WNT ligands, and profound female-specific changes in mesenchymal and epithelial lung cell gene expression. Genetic inactivation of WNT signaling reverses age-dependent changes of mTORC1-driven lung phenotype, but WNT activation alone in lung mesenchyme is not sufficient for the development of mouse LAM-like phenotype. The alterations in gene expression are driven by distinctive crosstalk between mesenchymal and epithelial subsets of cells observed in mesenchymal Tsc2-deficient lungs. This study identifies sex- and age-specific gene changes in the mTORC1-activated lung mesenchyme and establishes the importance of the WNT signaling pathway in the mTORC1-driven lung phenotype.


2000 ◽  
Vol 13 (1) ◽  
pp. 16-34 ◽  
Author(s):  
Martin M. Dinges ◽  
Paul M. Orwin ◽  
Patrick M. Schlievert

SUMMARY This article reviews the literature regarding the structure and function of two types of exotoxins expressed by Staphylococcus aureus, pyrogenic toxin superantigens (PTSAgs) and hemolysins. The molecular basis of PTSAg toxicity is presented in the context of two diseases known to be caused by these exotoxins: toxic shock syndrome and staphylococcal food poisoning. The family of staphylococcal PTSAgs presently includes toxic shock syndrome toxin-1 (TSST-1) and most of the staphylococcal enterotoxins (SEs) (SEA, SEB, SEC, SED, SEE, SEG, and SEH). As the name implies, the PTSAgs are multifunctional proteins that invariably exhibit lethal activity, pyrogenicity, superantigenicity, and the capacity to induce lethal hypersensitivity to endotoxin. Other properties exhibited by one or more staphylococcal PTSAgs include emetic activity (SEs) and penetration across mucosal barriers (TSST-1). A detailed review of the molecular mechanisms underlying the toxicity of the staphylococcal hemolysins is also presented.


Sign in / Sign up

Export Citation Format

Share Document