Purification of bovine cathepsin B: proteomic characterization of the different forms and production of specific antibodies

2003 ◽  
Vol 81 (4) ◽  
pp. 317-326 ◽  
Author(s):  
M A Sentandreu ◽  
L Aubry ◽  
A Ouali

Cathepsin B (EC 3.4.22.1) has been highly purified (14 225 fold) from bovine kidney by a rapid procedure that included the preparation of an enriched lysosomal extract, a selective fractionation with ammonium sulphate, size-exclusion chromatography, two cation-exchange chromatographies, and anion-exchange chromatography on diethylaminoethyl–Sephacel. After the last purification step, two hydrolytic peaks against Z-Phe-Arg-AMC were separated from each other, a minor peak corresponding to the cathepsin B single-chain form and a major one representing the double-chain form of cathepsin B. The single-chain form showed a molecular mass of 31 kDa on sodium dodecyl sulphate – polyacrylamide gel electrphoresis (PAGE) under reducing conditions, whereas the heavy chain of the double-chain form appeared as a doublet with molecular masses of 23.4 and 25 kDa, respectively. The identity of the different cathepsin B isoforms and the quality of the final enzyme preparation were confirmed by using two types of antibodies, one against a synthetic peptide sequence and one against purified cathepsin B. The proteomic study confirmed the identity of the different SDS–PAGE protein bands as cathepsin B isoforms and allowed the comparison and study of some structural differences between them at the level of their primary structures.Key words: cathepsin B, bovine kidney, MALDI-TOF, cathepsin B isoforms, antibodies.

1992 ◽  
Vol 285 (2) ◽  
pp. 427-434 ◽  
Author(s):  
K Moin ◽  
N A Day ◽  
M Sameni ◽  
S Hasnain ◽  
T Hirama ◽  
...  

Cathepsin B was purified from normal human liver and several human tumour tissues and partially characterized. Three forms of cathepsin B, with molecular masses of 25 kDa, 26 kDa (the two appearing as a doublet) and 30 kDa, were detected in SDS/polyacrylamide gels. The 25-26 kDa doublet was associated with the fractions from tumours and normal liver containing the highest cathepsin B activity. Cathepsin B from both sources showed similar pH optima. Both normal liver and tumour cathepsin B exhibited similar kinetics against selected synthetic substrates. At neutral pH and 24 degrees C, cathepsin B from both normal liver and tumour exhibited a lower Km and a higher kcat./Km than at pH 6.0. Their inhibitory profiles against synthetic inhibitors were also similar. Immunological studies with a monospecific antibody against the mature double-chain form of human liver cathepsin B and an antibody against a cathepsin B-derived synthetic peptide established the immunological similarity of liver and tumour enzymes. The N-terminal sequences of the 25 kDa and 26 kDa forms were identical with that of the heavy chain of the mature double-chain form of human cathepsin B, whereas the N-terminal sequence of the 30 kDa species was identical with that of the single-chain form of human cathepsin B. Treatment of the double-chain form of cathepsin B from normal liver and tumours with the endoglycosidase peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase converted the 26 kDa form into 25 kDa in SDS/polyacrylamide gels, suggesting that cathepsin B may exist as both glycosylated and unglycosylated forms. Our results, in contrast with those reported earlier for mouse cathepsin B, indicate that human liver and tumour cathepsin B are similar.


Author(s):  
Ken-ji Yokoi ◽  
Sosyu Tsutsui ◽  
Gen-ya Arakawa ◽  
Masakazu Takaba ◽  
Koichi Fujii ◽  
...  

Abstract Information about the inulosucrase of non-lactic acid bacteria is scarce. We found a gene encoding inulosucrase (inuBK) in the genome of the gram-positive bacterium Alkalihalobacillus krulwichiae JCM 11691. The inuBK open reading frame encoded a protein comprising 456 amino acids. We expressed His-tagged InuBK in culture medium using a Brevibacillus system. The optimal pH and temperature of purified InuBK were 7.0–9.0 and 50 °C–55 °C, respectively. The findings of high-performance anion-exchange chromatography, nuclear magnetic resonance spectroscopy, and high-performance size-exclusion chromatography with multi-angle laser light scattering showed that the polysaccharide produced by InuBK was an inulin with a molecular weight of 3,806, a polydispersity index (PI) of 1.047, and fructosyl chain lengths with 3–27 degrees of polymerization. The size of InuBK was smaller than commercial inulins, and the PI of the inulin that it produced was lower.


2010 ◽  
Vol 5 (6) ◽  
pp. 1934578X1000500
Author(s):  
Hidayatullah Khan ◽  
Irshad Ali ◽  
Arif-ullah Khan ◽  
Mushtaq Ahmed ◽  
Zamarud Shah ◽  
...  

A high molecular weight serine protease has been purified to electrophoretic homogeneity from the seeds of Caesalpinia bonducella Flem. (Caesalpiniaceae) by the combination of size exclusion and ion exchange chromatography. About 524 fold purification was achieved with an overall recovery of 6.8%. The specific activity was found to be 86 U/mg/min at pH 8.0. The calculated Km and Vmax were 1.66 mg/mL and 496.68 units/min per mg of protein, respectively. The molecular mass was estimated to be about 63 kDa by sodium dodecyl sulfate PAGE. The enzyme showed optimum activity at pH 8.0 and exhibited its highest activity at 40°C. The enzyme was strongly inhibited by 2mM phenylmethylsulfonyl fluoride (PMSF), suggesting the presence of a serine residue at the active site. PMSF showed a pure competitive type of inhibition with the serine protease enzyme. It was observed that enzyme activity was enhanced in the presence of dications and was active against a variety of modified substrates and natural proteins.


2020 ◽  
Vol 10 (8) ◽  
pp. 2648 ◽  
Author(s):  
Paolina Lukova ◽  
Mariana Nikolova ◽  
Emmanuel Petit ◽  
Redouan Elboutachfaiti ◽  
Tonka Vasileva ◽  
...  

The aim of the present study was to evaluate the prebiotic potential of Plantago major L. leaves water-extractable polysaccharide (PWPs) and its lower molecular fractions. The structure of PWPs was investigated by high pressure anion exchange chromatography (HPAEC), size exclusion chromatography coupled with multi-angle laser light scattering detector (SEC-MALLS) and Fourier-transform infrared (FTIR) spectroscopy. The chemical composition and monosaccharide analyses showed that galacturonic acid was the main monosaccharide of PWPs followed by glucose, arabinose, galactose, rhamnose and xylose. FTIR study indicated a strong characteristic absorption peak at 1550 cm−1 corresponding to the vibration of COO− group of galacturonic acid. The PWPs was subjected to hydrolysis using commercial enzymes to obtain P. major low molecular fraction (PLM) which was successively separated by size exclusion chromatography on Biogel P2. PWPs and PLM were examined for in vitro prebiotic activity using various assays. Results gave evidence for changes in optical density of the bacteria cells and pH of the growth medium. A heterofermentative process with a lactate/acetate ratio ranged from 1:1 to 1:5 was observed. The ability of PLM to stimulate the production of certain probiotic bacteria glycohydrolases and to be fermented by Lactobacillus sp. strains was successfully proved.


2011 ◽  
Vol 66 (5-6) ◽  
pp. 287-295
Author(s):  
Ping-Chung Liu ◽  
Wen-Hsiao Chuang ◽  
Kuo-Kau Lee

The aim of the present study was to purify and characterize a toxic protease secreted by the pathogenic Photobacterium damselae subsp. piscicida strain CP1 originally isolated from diseased cobia (Rachycentron canadum). The toxin isolated by anion exchange chromatography, was a metalloprotease, inhibited by L-cysteine, ethylenediaminetetraacetic acid (EDTA), ethylene glycol-bis(β-aminoethyl ether)N,N,N’,N’-tetraacetic acid (EGTA), 1,10-phenanthroline, N-tosyl-L-phenylalanine-chloromethyl ketone (TPCK), and N-α-ptosyl- L-lysine-chloromethyl ketone (TLCK), and showed maximal activity at pH 6.0 - 8.0 and an apparent molecular mass of about 34.3 kDa. The toxin was also completely inhibited by HgCl2, and partially by sodium dodecyl sulfate (SDS) and CuCl2. The extracellular products and the partially purified protease were lethal to cobia with LD50 values of 1.26 and 6.8 μg protein/g body weight, respectively. The addition of EDTA completely inhibited the lethal toxicity of the purified protease, indicating that this metalloprotease was a lethal toxin produced by the bacterium.


2004 ◽  
Vol 70 (4) ◽  
pp. 2367-2372 ◽  
Author(s):  
Xiaokun Wang ◽  
Xin Geng ◽  
Yukari Egashira ◽  
Hiroo Sanada

ABSTRACT Dietary ferulic acid (FA), a significant antioxidant substance, is currently the subject of extensive research. FA in cereals exists mainly as feruloylated sugar ester. To release FA from food matrices, it is necessary to cleave ester cross-linking by feruloyl esterase (FAE) (hydroxycinnamoyl esterase; EC 3.1.1.73). In the present study, the FAE from a human typical intestinal bacterium, Lactobacillus acidophilus, was isolated, purified, and characterized for the first time. The enzyme was purified in successive steps including hydrophobic interaction chromatography and anion-exchange chromatography. The purified FAE appeared as a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with an apparent molecular mass of 36 kDa. It has optimum pH and temperature characteristics (5.6 and 37°C, respectively). The metal ions Cu2+ and Fe3+ (at a concentration of 5 mmol liter−1) inhibited FAE activity by 97.25 and 94.80%, respectively. Under optimum pH and temperature with 5-O-feruloyl-l-arabinofuranose (FAA) as a substrate, the enzyme exhibited a K m of 0.0953 mmol liter−1 and a V max of 86.27 mmol liter−1 min−1 mg−1 of protein. Furthermore, the N-terminal amino acid sequence of the purified FAE was found to be A R V E K P R K V I L V G D G A V G S T. The FAE released FA from O-(5-O-feruloyl-α-l-arabinofuranosyl)-(1→3)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose (FAXX) and FAA obtained from refined corn bran. Moreover, it released two times more FA from FAXX in the presence of added xylanase.


1984 ◽  
Vol 220 (3) ◽  
pp. 811-818 ◽  
Author(s):  
M P Waalkes ◽  
S B Chernoff ◽  
C D Klaassen

Cadmium-binding proteins in the cytosol of testes from untreated rats were separated by Sephadex G-75 gel filtration. Three major testicular metal-binding proteins (TMBP), or groups of proteins, with relative elution volumes of approx. 1.0 (TMBP-1), 1.7 (TMBP-2) and 2.4 (TMBP-3) were separated. Elution of Zn-binding proteins exhibited a similar pattern. TMBP-3 has previously been thought to be metallothionein (MT), and hence this protein was further characterized and compared with hepatic MT isolated from Cd-treated rats. Estimation of Mr by gel filtration indicated a slight difference between MT (Mr 10000) and TMBP-3 (Mr 8000). Two major forms of MT (MT-I and MT-II) and TMBP-3 (TMBP-3 form I and TMBP-3 form II) were obtained after DEAE-Sephadex A-25 anion-exchange chromatography, with the corresponding subfractions being eluted at similar conductances. Non-denaturing polyacrylamide-gel electrophoresis on 7% acrylamide gels indicated that the subfractions of TMBP-3 had similar mobilities to those of the corresponding subfractions of MT. However, SDS (sodium dodecyl sulphate)/12% (w/v)-polyacrylamide-gel electrophoresis resulted in marked differences in migration of the two corresponding forms of MT and TMBP-3. Co-electrophoresis of MT-II and TMBP-3 form II by SDS/polyacrylamide-gel electrophoresis revealed two distinct proteins. Amino acid analysis indicated much lower content of cysteine in the testicular than in the hepatic proteins. TMBP-3 also contained significant amounts of tyrosine, phenylalanine and histidine, whereas MT did not. U.v.-spectral analysis of TMBP-3 showed a much lower A250/A280 ratio than for MT. Thus this major metal-binding protein in testes, which has been assumed to be MT is, in fact, a quite different protein.


2001 ◽  
Vol 354 (1) ◽  
pp. 161-168 ◽  
Author(s):  
Ying-Ming WANG ◽  
Suei-Rong WANG ◽  
Inn-Ho TSAI

The major coagulating fibrinogenase of Deinagkistrdon acutus venom, designated acutobin, was purified by anion-exchange chromatography, gel filtration and reverse-phase HPLC. Approximately 80% of its protein sequence was determined by sequencing the various fragments derived from CNBr cleavage and digestion with endoprotease. Extensive screening of the venom gland cDNA species after amplification by PCR resulted in the isolation of four distinct cDNA clones encoding acutobin and three other serine proteases, designated Dav-PA, Dav-KN and Dav-X. The complete amino acid sequences of these enzymes were deduced from the cDNA sequences. The amino-acid sequence of acutobin contains a single chain of 236 residues including four potential N-glycosylation sites. The purified acutobin (40kDa) contains approx. 30% carbohydrate by weight, which could be partly removed by N-glycanase. The phylogenetic tree of the complete amino acid sequences of 40 serine proteases from 18 species of Crotalinae shows functional clusters reflecting parallel evolution of the three major venom enzyme subtypes: coagulating enzymes, kininogenases and plasminogen activators. The possible structural elements responsible for the functional specificity of each subtype are discussed.


Holzforschung ◽  
2004 ◽  
Vol 58 (1) ◽  
pp. 97-104 ◽  
Author(s):  
B. Saake ◽  
S. Lebioda ◽  
J. Puls

Abstract Four methyl cellulose samples in the degree of substitution range from 0.5 to 2.0 were characterised by combination of different analytical methods. Samples were analysed regarding their partial degree of substitution by hydrolysis and anion exchange chromatography with pulsed amperometric detection. For calibration of the chromatographic system, standard substances were isolated by preparative HPLC and their structure was confirmed by 13C-NMR spectroscopy. For two methyl cellulose samples per-acetylation and 13C-NMR with inverse gated decoupling was carried out for comparison with the chromatographic analysis. Endoglucanase fragmentation of methyl celluloses was performed and water-soluble and insoluble fractions were analysed separately. A preparative size exclusion chromatography system for enzymatic-degraded water-soluble methyl cellulose was developed and the molar masses of the individual fractions were examined by analytical size exclusion chromatography. By combination of endoglucanase fragmentation, preparative chromatography, hydrolysis and anion exchange chromatography an approach for the analysis of the substitutent distribution along the polymeric chain of water-soluble methyl cellulose could be established.


Sign in / Sign up

Export Citation Format

Share Document