Circular dichroism studies on Mengo virus variants and their constituent ribonucleates

1970 ◽  
Vol 48 (8) ◽  
pp. 940-943 ◽  
Author(s):  
Cyril M. Kay ◽  
John S. Colter ◽  
Kimio Oikawa

A comparison of the circular dichroic spectra of three variants of Mengo virus and their constituent ribonucleates shows that the curves are essentially identical to one another, with respect to crossover points and the positions and amplitudes of troughs and peaks. This would suggest that the manner in which the proteins are arranged around the RNA chain in the virus is precise and similar in all three cases, and that there are no significant differences in the density of packing among the virions. By subtracting the RNA contribution from that of the virus, the circular dichroic curve of the protein in situ was obtained. The small amplitude of the ellipticity bands at ~205 and 220 mμ (transitions characteristic of the right-handed α-helix) suggests that the protein, as it exists in the virion, possesses a low α-helical content. This observation is consistent with the fact that the viral protein contains a large content of proline and non-α-helix-forming amino acids.

2021 ◽  
Vol 22 (10) ◽  
pp. 5364
Author(s):  
Yui Makura ◽  
Atsushi Ueda ◽  
Takuma Kato ◽  
Akihiro Iyoshi ◽  
Mei Higuchi ◽  
...  

Hydrocarbon stapling is a useful tool for stabilizing the secondary structure of peptides. Among several methods, hydrocarbon stapling at i,i + 1 positions was not extensively studied, and their secondary structures are not clarified. In this study, we investigate i,i + 1 hydrocarbon stapling between cis-4-allyloxy-l-proline and various olefin-tethered amino acids. Depending on the ring size of the stapled side chains and structure of the olefin-tethered amino acids, E- or Z-selectivities were observed during the ring-closing metathesis reaction (E/Z was up to 8.5:1 for 17–14-membered rings and up to 1:20 for 13-membered rings). We performed X-ray crystallographic analysis of hydrocarbon stapled peptide at i,i + 1 positions. The X-ray crystallographic structure suggested that the i,i + 1 staple stabilizes the peptide secondary structure to the right-handed α-helix. These findings are especially important for short oligopeptides because the employed stapling method uses two minimal amino acid residues adjacent to each other.


2019 ◽  
Vol 26 (7) ◽  
pp. 532-541 ◽  
Author(s):  
Cadena-Cadena Francisco ◽  
Cárdenas-López José Luis ◽  
Ezquerra-Brauer Josafat Marina ◽  
Cinco-Moroyoqui Francisco Javier ◽  
López-Zavala Alonso Alexis ◽  
...  

Background: Cathepsin D is a lysosomal enzyme that is found in all organisms acting in protein turnover, in humans it is present in some types of carcinomas, and it has a high activity in Parkinson's disease and a low activity in Alzheimer disease. In marine organisms, most of the research has been limited to corroborate the presence of this enzyme. It is known that cathepsin D of some marine organisms has a low thermostability and that it has the ability to have activity at very acidic pH. Cathepsin D of the Jumbo squid (Dosidicus gigas) hepatopancreas was purified and partially characterized. The secondary structure of these enzymes is highly conserved so the role of temperature and pH in the secondary structure and in protein denaturation is of great importance in the study of enzymes. The secondary structure of cathepsin D from jumbo squid hepatopancreas was determined by means of circular dichroism spectroscopy. Objective: In this article, our purpose was to determine the secondary structure of the enzyme and how it is affected by subjecting it to different temperature and pH conditions. Methods: Circular dichroism technique was used to measure the modifications of the secondary structure of cathepsin D when subjected to different treatments. The methodology consisted in dissecting the hepatopancreas of squid and freeze drying it. Then a crude extract was prepared by mixing 1: 1 hepatopancreas with assay buffer, the purification was in two steps; the first step consisted of using an ultrafiltration membrane with a molecular cut of 50 kDa, and the second step, a pepstatin agarose resin was used to purification the enzyme. Once the enzyme was purified, the purity was corroborated with SDS PAGE electrophoresis, isoelectric point and zymogram. Circular dichroism is carried out by placing the sample with a concentration of 0.125 mg / mL in a 3 mL quartz cell. The results were obtained in mdeg (millidegrees) and transformed to mean ellipticity per residue, using 111 g/mol molecular weight/residue as average. Secondary-structure estimation from the far-UV CD spectra was calculated using K2D Dichroweb software. Results: It was found that α helix decreases at temperatures above 50 °C and above pH 4. Heating the enzyme above 70°C maintains a low percentage of α helix and increases β sheet. Far-UV CD measurements of cathepsin D showed irreversible thermal denaturation. The process was strongly dependent on the heating rate, accompanied by a process of oligomerization of the protein that appears when the sample is heated, and maintained a certain time at this temperature. An amount typically between 3 and 4% α helix of their secondary structure remains unchanged. It is consistent with an unfolding process kinetically controlled due to the presence of an irreversible reaction. The secondary structure depends on pH, and a pH above 4 causes α helix structures to be modified. Conclusion: In conclusion, cathepsin D from jumbo squid hepatopancreas showed retaining up to 4% α helix at 80°C. The thermal denaturation of cathepsin D at pH 3.5 is under kinetic control and follows an irreversible model.


2014 ◽  
Vol 10 ◽  
pp. 1246-1254 ◽  
Author(s):  
Zbigniew Pakulski ◽  
Norbert Gajda ◽  
Magdalena Jawiczuk ◽  
Jadwiga Frelek ◽  
Piotr Cmoch ◽  
...  

The reaction of appropriately functionalized sucrose phosphonate with sucrose aldehyde afforded a dimer composed of two sucrose units connected via their C6-positions (‘the glucose ends’). The carbonyl group in this product (enone) was stereoselectively reduced with zinc borohydride and the double bond (after protection of the allylic alcohol formed after reduction) was oxidized with osmium tetroxide to a diol. Absolute configurations of the allylic alcohol as well as the diol were determined by circular dichroism (CD) spectroscopy using the in situ dimolybdenum methodology.


2021 ◽  
pp. 204589402110136
Author(s):  
Tailong Zhang ◽  
Weitao Liang ◽  
Longrong Bian ◽  
Zhong Wu

Right heart thrombus (RHT) accompanied by chronic thromboembolic pulmonary hypertension (CTEPH) is a rare entity. RHT may develop in the peripheral veins or in situ within the right heart chambers. The diagnosis of RHT is challenging, since its symptoms are typically non-specific and its imaging features resemble those of cardiac masses. Here, we report two cases of RHT with CTEPH that presented as right ventricular masses initially. Both patients underwent simultaneous pulmonary endarterectomy (PEA) and resection of the ventricular thrombi. Thus, when mass-like features are confirmed by imaging, RHT should be suspected in patients with CTEPH, and simultaneous RHT resection is required along with PEA.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tao Hu ◽  
Zhen Wu ◽  
Shaoxiong Wu ◽  
Shun Chen ◽  
Anchun Cheng

AbstractFlaviviruses are enveloped viruses that infect multiple hosts. Envelope proteins are the outermost proteins in the structure of flaviviruses and mediate viral infection. Studies indicate that flaviviruses mainly use envelope proteins to bind to cell attachment receptors and endocytic receptors for the entry step. Here, we present current findings regarding key envelope protein amino acids that participate in the flavivirus early infection process. Among these sites, most are located in special positions of the protein structure, such as the α-helix in the stem region and the hinge region between domains I and II, motifs that potentially affect the interaction between different domains. Some of these sites are located in positions involved in conformational changes in envelope proteins. In summary, we summarize and discuss the key envelope protein residues that affect the entry process of flaviviruses, including the process of their discovery and the mechanisms that affect early infection.


Iraq ◽  
1996 ◽  
Vol 58 ◽  
pp. 79-87
Author(s):  
Arlette Roobaert

During the 1993 season of excavations at Tell Ahmar, three pieces of a life-size basalt statue were found in a pit dug into one of the large walls surrounding an Iron Age vaulted tomb (Fig. 1). The head, the tors o and the lower part fitted together perfectly. When correctly assembled, these three pieces formed the figure of a standing beardless man with clasped hands (Fig. 2a−b). Only the feet were missing. The maximum height of the reconstructed statue is 1.45m. It was clear from the damage to portions of its body that the statue had been deliberately broken in antiquity. Details, such as a large hole on the right side of the chest, a smaller one on the top of the head and, above all, the defacement of the head suggest that the statue may have actually been “killed”.All three pieces of the statue, which was carved out of a blue greyish basalt of medium texture, were found lying on their backs (Fig. 4). The head lay next to the lower part of the statue, but was buried in a slightly deeper position. The relative placement of these fragments seems to be a clear indication that the statue was not knocked down at this particular spot, but was brought to this location in separate pieces, perhaps with the deliberate intention of burying them.The head was cut off as if the statue had been decapitated. The torso was separated from the lower portion of the statue by an oblique cut that divided the figure just below the waist. The cut runs downwards from the back and continues underneath the clasped hands at the front, leaving the hands almost completely undamaged. The lower part of the statue seems to have been separated from the missing feet by a horizontal cut. This may indicate that the base of the statue was left in situ, probably because it was solidly set in the ground.


2016 ◽  
Vol 14 (2) ◽  
pp. 556-563 ◽  
Author(s):  
Veladi Panduranga ◽  
Girish Prabhu ◽  
Roopesh Kumar ◽  
Basavaprabhu Basavaprabhu ◽  
Vommina V. Sureshbabu

A simple and efficient method for the synthesis of N,N’-orthogonally protected imide tethered peptidomimetics is presented. The imide peptidomimetics were synthesized by coupling the in situ generated selenocarboxylate of Nα-protected amino acids with Nα-protected amino acid azides in good yields.


1972 ◽  
Vol 50 (1) ◽  
pp. 177-184 ◽  
Author(s):  
Johan A. Hellebust ◽  
Arne Haug

Amino acids, particularly alanine and aspartate, become more strongly labeled than mannitol in short-term 14C-photoassimilation experiments. The amino acids are the most likely sources of carbon for alginic acid synthesis and respiration in the dark, in contrast to mannitol, which appears to be relatively unavailable. Temperature is very important in determining the rate of loss of recent photoassimilate in L. digitata. The rate of photosynthesis, on a fresh weight basis, is much higher for blades than for stipes.The time course for incorporation of photoassimilated carbon into alginate differs for the stipe and blade both in light and dark periods. Very little 14C enters alginate in blades in the dark, while alginate in stipes acquires considerable amounts of activity during dark periods. Alginate in both blade and stipe acquires 14C predominantly in mannuronic acid residues of their alginate during short-term photoassimilation periods, while guluronic acid residues become relatively more rapidly labeled during dark periods.


Sign in / Sign up

Export Citation Format

Share Document