A kinetic analysis of the processive enzyme Lactobacillus plantarum exoribonuclease

1977 ◽  
Vol 55 (7) ◽  
pp. 671-677 ◽  
Author(s):  
Kam-Fong Lam ◽  
David M. Logan

Oligonucleotide chains consisting of adenosine residues and ranging from 1 to 70 residues in length have been tested as substrates or inhibitors with Lactobacillus plantarum exoribonuclease (EC 3.1.4.20). The kinetic constants V, Km, and Ki are all chain-length dependent. Ki decreases with increasing chain length to a minimum for oligonucleotides seven residues in length and then begins to increase slightly. Kinetic plots indicate that the oligonucleotides are almost all competitive inhibitors of poly A hydrolysis. However, the oligonucleotide (Ap)3A > p probably leads to mixed inhibition. The enzyme is unable to retain its processivity when it hydrolyzes short oligonucleotides such as (Ap)2A and (Ap)3A. It is proposed that L. plantarum exoribonuclease possesses seven binding sites for the polynucleotide. When the enzyme is bound to a long-chain-length substrate the complex is stabilized by a binding energy of about 8 Kcal/mol. After cleavage of the terminal nucleotide the remaining binding energy is still sufficient to maintain an enzyme–substrate complex. The shortened nucleotide chain is moved relative to the enzyme to re-form the seven-bond association by a gradient of energy of about 1.7 Kcal/mol for the change from six to seven bonds.

1981 ◽  
Author(s):  
I Björk ◽  
U Lindahl

Antithrombin inhibits a variety of serine proteases by forming equimolar, inactive complexes with the enzymes. The anti thrombin-thrombin complex, extensively studied as a model for complexes with other coagulation proteases, dissociates with a half-life of several days to free enzyme and a proteolytically modified inhibitor. It thus behaves like a kinetically stable enzyme-substrate complex. Several observations indicate that deacylation is the rate-limiting step. The active site of antithrombin, i.e. the bond slowly cleaved by the target enzyme, is the Arg-385/Ser-386 bond in the carboxy-terminal region of the protein. The formation of most anti thrombin-protease complexes is greatly accelerated by certain forms of heparin. These active molecules comprise about 1/3 of normal heparin preparations and bind with high affinity (K∼108 M-1) to the inhibitor, regardless of the size of the polysaccharide. The stoichiometry of binding is 1:1 for most heparin molecules, although some high-molecular-weight chains have two antithrombin binding sites. Evidence from spectroscopic and kinetic analyses suggests that the binding of high-affinity heparin induces a conformational change in antithrombin that probably is involved in the mechanism of the increased rate of enzyme inactivation. Oligosaccharides with high-affinity for anti thrombin have been isolated by affinity chromatography following partial deaminative cleavage of heparin with nitrous acid. The smallest such oligosaccharide obtained is an octasaccharide, in which a pentasaccharide sequence appears to comprize the actual antithrombin-binding site. This active sequence contains a unique, 3-O-sulfated glucosamine residue that does not appear to occur in other portions of the heparin molecule. In addition, two N-sulfate groups and probably at least one O-sulfate group within the pentasaccharide sequence are essential for high-affinity binding of heparin to antithrombin.


Enzymes make use of non-covalent interactions with their substrates to bring about a large fraction of their catalytic activity. These interactions must destabilize, or increase the Gibbs energy, of the substrate in the active site in order that the transition state can be reached easily. This destabilization may be brought about by utilization of the intrinsic binding energy between the active site and the bound substrate by desolvation of charged groups, geometric distortion, electrostatic interactions and, especially, loss of entropy in the enzyme-substrate complex. These mechanisms are described by interaction energies and require utilization of the intrinsic binding energy that is realized from non-covalent interactions between the enzyme and substrate. Receptors and coupled vectorial processes, such as muscle contraction and active transport, utilize binding energy similarly to avoid large peaks and valleys along the Gibbs energy profile of the reaction under physiological conditions.


2019 ◽  
Author(s):  
Jennifer Nill ◽  
Tina Jeoh

AbstractInterfacial enzyme reactions require formation of an enzyme-substrate complex at the surface of a heterogeneous substrate, but often multiple modes of enzyme binding and types of binding sites complicate analysis of their kinetics. Excess of heterogeneous substrate is often used as a justification to model the substrate as unchanging; but using the study of the enzymatic hydrolysis of insoluble cellulose as an example, we argue that reaction rates are dependent on evolving substrate interfacial properties. We hypothesize that the relative abundance of binding sites on cellulose where hydrolysis can occur (productive binding sites) and binding sites where hydrolysis cannot be initiated or is inhibited (non-productive binding sites) contribute to rate limitations. We show that the initial total number of productive binding sites (the productive binding capacity) determines the magnitude of the initial burst phase of cellulose hydrolysis, while productive binding site depletion explains overall hydrolysis kinetics. Furthermore, we show that irreversibly bound surface enzymes contribute to the depletion of productive binding sites. Our model shows that increasing the ratio of productive- to non-productive binding sites promotes hydrolysis, while maintaining an elevated productive binding capacity throughout conversion is key to preventing hydrolysis slowdown.


1976 ◽  
Vol 153 (2) ◽  
pp. 455-461 ◽  
Author(s):  
A Cornish-Bowden

If the Michaelis constant of an enzyme-catalysed reaction is independent of pH under conditions where the catalytic constant varies with pH, it is equal to the thermodynamic dissociation constant of the enzyme-substrate complex. This is true for realistic mechanisms in which binding and catalytic steps, are clearly distinguished, as well as for the simpler mechanisms that have been considered previously. It is also true for a mechanism in which a bell-shaped pH profile for the catalytic constant results from a change of rate-limiting step with pH. The relaxation time for ionization of a typical group in unbuffered solutions at 25 degrees C is of the order of 0.1 ms at the longest, and is much shorter in buffered solutions. Thus ionizations in almost all enzyme mechanisms can properly be treated as equilibria, provided that ionization is not accompanied by a slow, compulsory change in conformation.


1998 ◽  
Vol 335 (1) ◽  
pp. 181-189 ◽  
Author(s):  
Jia-Wei WU ◽  
Zhi-Xin WANG

Substrate effects on the activation kinetics of Chinese hamster dihydrofolate reductase by p-chloromercuribenzoate (pCMB) have been studied. On the basis of the kinetic equation of substrate reaction in the presence of pCMB, all modification kinetic constants for the free enzyme and enzyme–substrate binary and ternary complexes have been determined. The results of the present study indicate that the modification of Chinese hamster dihydrofolate reductase by pCMB shows single-phase kinetics, and that changes in the enzyme activity and tertiary structure proceed simultaneously during the modification process. Both substrates, NADPH and 7,8-dihydrofolate, protect dihydrofolate reductase against modification by pCMB. In the presence of a saturating concentration of NADPH, the value of kcat for 7,8-dihydrofolate in the enzyme-catalysed reaction increased four-fold on modification of Cys-6, accompanied by a two-fold increase in Km for the modified enzyme. The utilization of the binding energy of a group to increase kcat rather than reduce Km implies that the full binding energy of the group is not realized in the formation of the enzyme–substrate complex, but is used to stabilize the enzyme–transition-state complex.


1980 ◽  
Vol 45 (2) ◽  
pp. 427-434 ◽  
Author(s):  
Kveta Heinrichová ◽  
Rudolf Kohn

The effect of exo-D-galacturonanase from carrot on O-acetyl derivatives of pectic acid of variousacetylation degree was studied. Substitution of hydroxyl groups at C(2) and C(3) of D-galactopyranuronic acid units influences the initial rate of degradation, degree of degradation and its maximum rate, the differences being found also in the time of limit degradations of the individual O-acetyl derivatives. Value of the apparent Michaelis constant increases with increase of substitution and value of Vmax changes. O-Acetyl derivatives act as a competitive inhibitor of degradation of D-galacturonan. The extent of the inhibition effect depends on the degree of substitution. The only product of enzymic reaction is D-galactopyranuronic acid, what indicates that no degradation of the terminal substituted unit of O-acetyl derivative of pectic acid takes place. Substitution of hydroxyl groups influences the affinity of the enzyme towards the modified substrate. The results let us presume that hydroxyl groups at C(2) and C(3) of galacturonic unit of pectic acid are essential for formation of the enzyme-substrate complex.


2021 ◽  
Vol 14 ◽  
pp. 117863612110246
Author(s):  
Cheuk Yin Lai ◽  
Ka Lun Ng ◽  
Hao Wang ◽  
Chui Chi Lam ◽  
Wan Keung Raymond Wong

CenA is an endoglucanase secreted by the Gram-positive cellulolytic bacterium, Cellulomonas fimi, to the environment as a glycosylated protein. The role of glycosylation in CenA is unclear. However, it seems not crucial for functional activity and secretion since the unglycosylated counterpart, recombinant CenA (rCenA), is both bioactive and secretable in Escherichia coli. Using a systematic screening approach, we have demonstrated that rCenA is subjected to spontaneous cleavages (SC) in both the cytoplasm and culture medium of E. coli, under the influence of different environmental factors. The cleavages were found to occur in both the cellulose-binding (CellBD) and catalytic domains, with a notably higher occurring rate detected in the former than the latter. In CellBD, the cleavages were shown to occur close to potential N-linked glycosylation sites, suggesting that these sites might serve as ‘attributive tags’ for differentiating rCenA from endogenous proteins and the points of initiation of SC. It is hypothesized that glycosylation plays a crucial role in protecting CenA from SC when interacting with cellulose in the environment. Subsequent to hydrolysis, SC would ensure the dissociation of CenA from the enzyme-substrate complex. Thus, our findings may help elucidate the mechanisms of protein turnover and enzymatic cellulolysis.


1971 ◽  
Vol 246 (3) ◽  
pp. 561-568 ◽  
Author(s):  
William R. Nes ◽  
P.A. Govinda Malya ◽  
Frank B. Mallory ◽  
Karen A. Ferguson ◽  
Josephine R. Landrey ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1051
Author(s):  
Edgardo Becerra ◽  
Giovanny Aguilera-Durán ◽  
Laura Berumen ◽  
Antonio Romo-Mancillas ◽  
Guadalupe García-Alcocer

Multidrug resistance protein-4 (MRP4) belongs to the ABC transporter superfamily and promotes the transport of xenobiotics including drugs. A non-synonymous single nucleotide polymorphisms (nsSNPs) in the ABCC4 gene can promote changes in the structure and function of MRP4. In this work, the interaction of certain endogen substrates, drug substrates, and inhibitors with wild type-MRP4 (WT-MRP4) and its variants G187W and Y556C were studied to determine differences in the intermolecular interactions and affinity related to SNPs using protein threading modeling, molecular docking, all-atom, coarse grained, and umbrella sampling molecular dynamics simulations (AA-MDS and CG-MDS, respectively). The results showed that the three MRP4 structures had significantly different conformations at given sites, leading to differences in the docking scores (DS) and binding sites of three different groups of molecules. Folic acid (FA) had the highest variation in DS on G187W concerning WT-MRP4. WT-MRP4, G187W, Y556C, and FA had different conformations through 25 ns AA-MD. Umbrella sampling simulations indicated that the Y556C-FA complex was the most stable one with or without ATP. In Y556C, the cyclic adenosine monophosphate (cAMP) and ceefourin-1 binding sites are located out of the entrance of the inner cavity, which suggests that both cAMP and ceefourin-1 may not be transported. The binding site for cAMP and ceefourin-1 is quite similar and the affinity (binding energy) of ceefourin-1 to WT-MRP4, G187W, and Y556C is greater than the affinity of cAMP, which may suggest that ceefourin-1 works as a competitive inhibitor. In conclusion, the nsSNPs G187W and Y556C lead to changes in protein conformation, which modifies the ligand binding site, DS, and binding energy.


2021 ◽  
Vol 49 (5) ◽  
pp. 2684-2699
Author(s):  
Ka-Weng Ieong ◽  
Gabriele Indrisiunaite ◽  
Arjun Prabhakar ◽  
Joseph D Puglisi ◽  
Måns Ehrenberg

Abstract We used quench flow to study how N6-methylated adenosines (m6A) affect the accuracy ratio between kcat/Km (i.e. association rate constant (ka) times probability (Pp) of product formation after enzyme-substrate complex formation) for cognate and near-cognate substrate for mRNA reading by tRNAs and peptide release factors 1 and 2 (RFs) during translation with purified Escherichia coli components. We estimated kcat/Km for Glu-tRNAGlu, EF-Tu and GTP forming ternary complex (T3) reading cognate (GAA and Gm6AA) or near-cognate (GAU and Gm6AU) codons. ka decreased 10-fold by m6A introduction in cognate and near-cognate cases alike, while Pp for peptidyl transfer remained unaltered in cognate but increased 10-fold in near-cognate case leading to 10-fold amino acid substitution error increase. We estimated kcat/Km for ester bond hydrolysis of P-site bound peptidyl-tRNA by RF2 reading cognate (UAA and Um6AA) and near-cognate (UAG and Um6AG) stop codons to decrease 6-fold or 3-fold by m6A introduction, respectively. This 6-fold effect on UAA reading was also observed in a single-molecule termination assay. Thus, m6A reduces both sense and stop codon reading accuracy by decreasing cognate significantly more than near-cognate kcat/Km, in contrast to most error inducing agents and mutations, which increase near-cognate at unaltered cognate kcat/Km.


Sign in / Sign up

Export Citation Format

Share Document