Purification of glucosylceramidase by affinity chromatography

1982 ◽  
Vol 60 (11) ◽  
pp. 1025-1031 ◽  
Author(s):  
P. M. Strasberg ◽  
J. A. Lowden ◽  
D. Mahuran

Glucosylceramide:β-glucosidase (glucocerebrosidase, EC 3.2.1.45) has been purified 12 900-fold from human placenta using a specific affinity column. The ligand, glucosyl sphingosine, prepared from glucocerebroside by alkaline hydrolysis, was attached to epoxy-activated Sepharose 6B. The enzyme was applied to the column in citrate–butanol or citrate – ethylene glycol solution at its pH optimum (5.6). No enzyme was bound in the presence of detergent. Glucocerebrosidase was eluted with citrate–taurocholate buffer at low pH or with citrate-taurocholate buffer containing D-gluconolactone at the pH optimum. Citrate–taurocholate solution alone at the pH optimum would not elute the enzyme. The enzyme hydrolyzed both the natural substrate, glucocerebroside, and the artificial substrate, 4-methylumbelliferyl glucopyranoside. Glucocerebrosidase migrated as a single band on 10% sodium dodecyl sulfate–polyacrylamide tube and (or) slab gels, corresponding to a molecular weight of 75 000. It also ran as a single zone of enzyme activity or protein on native gels, composed of 2.2% polyacrylamide – 0.4% agarose containing sodium taurocholate. This is the first reported use of this gel system for the examination of glucocerebrosidase. Overall recovery is 30%. The procedure represents a more rapid and specific technique for purification of glucocerebrosidase than those previously reported.

1981 ◽  
Vol 195 (3) ◽  
pp. 545-560 ◽  
Author(s):  
Heinz Fankhauser ◽  
Jerome A. Schiff ◽  
Leonard J. Garber

Extracts of Chlorella pyrenoidosa, Euglena gracilis var. bacillaris, spinach, barley, Dictyostelium discoideum and Escherichia coli form an unknown compound enzymically from adenosine 5′-phosphosulphate in the presence of ammonia. This unknown compound shares the following properties with adenosine 5′-phosphoramidate: molar proportions of constituent parts (1 adenine:1 ribose:1 phosphate:1 ammonia released at low pH), co-electrophoresis in all buffers tested including borate, formation of AMP at low pH through release of ammonia, mass and i.r. spectra and conversion into 5′-AMP by phosphodiesterase. This unknown compound therefore appears to be identical with adenosine 5′-phosphoramidate. The enzyme that catalyses the formation of adenosine 5′-phosphoramidate from ammonia and adenosine 5′-phosphosulphate was purified 1800-fold (to homogeneity) from Chlorella by using (NH4)2SO4 precipitation and DEAE-cellulose, Sephadex and Reactive Blue 2–agarose chromatography. The purified enzyme shows one band of protein, coincident with activity, at a position corresponding to 60000–65000 molecular weight, on polyacrylamide-gel electrophoresis, and yields three subunits on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of 26000, 21000 and 17000 molecular weight, consistent with a molecular weight of 64000 for the native enzyme. Isoelectrofocusing yields one band of pI4.2. The pH optimum of the enzyme-catalysed reaction is 8.8. ATP, ADP or adenosine 3′-phosphate 5′-phosphosulphate will not replace adenosine 5′-phosphosulphate, and the apparent Km for the last-mentioned compound is 0.82mm. The apparent Km for ammonia (assuming NH3 to be the active species) is about 10mm. A large variety of primary, secondary and tertiary amines or amides will not replace ammonia. One mol.prop. of adenosine 5′-phosphosulphate reacts with 1 mol.prop. of ammonia to yield 1 mol.prop. each of adenosine 5′-phosphoramidate and sulphate; no AMP is found. The highly purified enzyme does not catalyse any of the known reactions of adenosine 5′-phosphosulphate, including those catalysed by ATP sulphurylase, adenosine 5′-phosphosulphate kinase, adenosine 5′-phosphosulphate sulphotransferase or ADP sulphurylase. Adenosine 5′-phosphoramidate is found in old samples of the ammonium salt of adenosine 5′-phosphosulphate and can be formed non-enzymically if adenosine 5′-phosphosulphate and ammonia are boiled. In the non-enzymic reaction both adenosine 5′-phosphoramidate and AMP are formed. Thus the enzyme forms adenosine 5′-phosphoramidate by selectively speeding up an already favoured reaction.


2021 ◽  
Vol 22 (4) ◽  
pp. 2135
Author(s):  
Takashi Kanno ◽  
Changmin Kim ◽  
Daisuke Yamanaka ◽  
Ken-ichi Ishibashi ◽  
Hiroshi Tanaka ◽  
...  

Because Japanese cedar pollen (JCP) contains beta-1,3-d-glucan (BG), there is concern that its lingering presence in the atmosphere, especially during its scattering period, may cause false positives in the factor-G-based Limulus amebocyte lysate (LAL) assay used to test for deep mycosis (i.e., G-test). Hence, we examined whether the LAL assay would react positively with substances contained in JCP by using the G-test to measure JCP particles and extracts. BG was purified from the JCP extract on a BG-specific affinity column, and the percentage extractability was measured using three different BG-specific quantitative methods. The G-test detected 0.4 pg BG in a single JCP particle and 10 fg from a single particle in the extract. The percentage extractability of JCP-derived BG was not significantly different among the three quantitative methods. As the JCP particles should technically have been removed during serum separation, they should be less likely to be a direct false-positive factor. However, given that the LAL-assay-positive substances in the JCP extract were not distinguishable by the three BG-specific quantitative methods, we conclude that they may cause the background to rise. Therefore, in Japan false positives arising from JCP contamination should be considered when testing patients for deep mycosis.


2009 ◽  
Vol 83 (7) ◽  
pp. 3228-3237 ◽  
Author(s):  
François-Loic Cosset ◽  
Philippe Marianneau ◽  
Geraldine Verney ◽  
Fabrice Gallais ◽  
Noel Tordo ◽  
...  

ABSTRACT The cell entry and humoral immune response of the human pathogen Lassa virus (LV), a biosafety level 4 (BSL4) Old World arenavirus, are not well characterized. LV pseudoparticles (LVpp) are a surrogate model system that has been used to decipher factors and routes involved in LV cell entry under BSL2 conditions. Here, we describe LVpp, which are highly infectious, with titers approaching those obtained with pseudoparticles displaying G protein of vesicular stomatitis virus and their the use for the characterization of LV cell entry and neutralization. Upon cell attachment, LVpp utilize endocytic vesicles for cell entry as described for many pH-dependent viruses. However, the fusion of the LV glycoproteins is activated at unusually low pH values, with optimal fusion occurring between pH 4.5 and 3, a pH range at which fusion characteristics of viral glycoproteins have so far remained largely unexplored. Consistent with a shifted pH optimum for fusion activation, we found wild-type LV and LVpp to display a remarkable resistance to exposure to low pH. Finally, LVpp allow the fast and quantifiable detection of neutralizing antibodies in human and animal sera and will thus facilitate the study of the humoral immune response in LV infections.


1978 ◽  
Vol 234 (6) ◽  
pp. E606
Author(s):  
J G Spenney

Acetylsalicylic acid hydrolase activity of rabbit fundic gastric mucosa has been isolated from the soluble 100,000 X g supernate. The enzymatic activity was partially purified by ammonium sulfate precipitation. The Km for acetylsalicylate was 2 mM and pH optimum was 8.6. The activity was insensitive to ionic strength, slightly inhibited by inclusion of 100 mM Cl-, and demonstrated no requirement for Ca2+ or Mg2+. Acetylsalicylic acid esterase was markedly inhibited by sodium cholate and sodium dodecyl sulfate. The enzyme was insensitive to sulfhydryl reagents with the exception of p-chloromercuribenzenesulfonic acid, which markedly inhibited the enzyme. Diisopropyl fluorophosphate (DFP) inhibited enzymatic activity with a Ki of 9 X 10(-9)M. Eserine was also inhibitory with a Ki of 0.25 mM. Inhibition by DFP at low concentration and by eserine at millimolar concentrations suggests that this enzyme is related to the group of aliphatic esterases. Identification of potent inhibitors will enable studies to define the role of this enzyme with the use of experimental preparations in which systemic toxicity can be avoided.


1990 ◽  
Vol 10 (10) ◽  
pp. 5177-5186
Author(s):  
J Zhang ◽  
S T Jacob

Previous studies in our laboratory have characterized a 174-base-pair (bp) enhancer sequence in the rat ribosomal DNA spacer region that exhibits all of the characteristics of a polymerase (Pol) II enhancer. Further studies showed that at least half of the enhancer activity resides in a 37-bp motif (E1) within the 174-bp spacer sequence that is located between positions -2.183 and -2.219 kilobase pairs upstream of the initiation site. To identify the factor(s) that binds specifically to the 37-bp enhancer domain, we fractionated whole-cell extract from rat adenocarcinoma ascites cells by chromatography on a series of columns, including an oligodeoxynucleotide affinity column. The final preparation contained two polypeptides of molecular weights 79,400 and 89,100 and was completely devoid of RNA Pol I activity. Electrophoretic mobility shift analysis showed that the polypeptides in the purified preparation (designated E1BF) interacted with both the enhancer element and the core promoter. To determine whether each polypeptide can separately bind to the core promoter and the enhancer, the individual components were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, renatured, and subjected to gel retardation analysis. This experiment demonstrated that both polypeptides interacted with the two cis-acting sequences. The specificity of the binding was demonstrated by competition with unlabeled 37-bp and core promoter fragments and lack of competition with nonspecific DNAs in the mobility shift assay. The 37-bp enhancer as well as the downstream sequence of the core promoter were protected by E1BF in the DNase I footprinting assay. Addition of E1BF to limiting amounts of fraction DE-B, which contains all factors essential for Pol I-directed transcription, resulted in three- to fourfold stimulation of ribosomal DNA transcription. Comparison of molecular weights and footprinting profiles did not reveal any relationship between E1BF and other Pol I trans-acting factors.


1986 ◽  
Vol 6 (12) ◽  
pp. 4723-4733
Author(s):  
L A Chodosh ◽  
R W Carthew ◽  
P A Sharp

A simple approach has been developed for the unambiguous identification and purification of sequence-specific DNA-binding proteins solely on the basis of their ability to bind selectively to their target sequences. Four independent methods were used to identify the promoter-specific RNA polymerase II transcription factor MLTF as a 46-kilodalton (kDa) polypeptide. First, a 46-kDa protein was specifically cross-linked by UV irradiation to a body-labeled DNA fragment containing the MLTF binding site. Second, MLTF sedimented through glycerol gradients at a rate corresponding to a protein of native molecular weight 45,000 to 50,000. Third, a 46-kDa protein was specifically retained on a biotin-streptavidin matrix only when the DNA fragment coupled to the matrix contained the MLTF binding site. Finally, proteins from the most highly purified fraction which were eluted and renatured from the 44- to 48-kDa region of a sodium dodecyl sulfate-polyacrylamide gel exhibited both binding and transcription-stimulatory activities. The DNA-binding activity was purified 100,000-fold by chromatography through three conventional columns plus a DNA affinity column. Purified MLTF was characterized with respect to the kinetic and thermodynamic properties of DNA binding. These parameters indicate a high degree of occupancy of MLTF binding sites in vivo.


1986 ◽  
Vol 64 (12) ◽  
pp. 1288-1293 ◽  
Author(s):  
Josefa M. Alonso ◽  
Amando Garrido-Pertierra

5-Carboxymethyl-2-hydroxymuconic semialdehyde (CHMSA) dehydrogenase in the 4-hydroxyphenylacetate meta-cleavage pathway was purified from Pseudomonas putida by gel filtration, anion-exchange, and affinity chromatographies. Sodium dodecyl sulfate – polyacrylamide gel electrophoresis analysis suggested an approximate tetrameric molecular weight of 200 000. The purified enzyme showed a pH optimum at 7.8. The temperature–activity relationship for the enzyme from 27 to 45 °C showed broken Arrhenius plots with an inflexion at 36–37 °C. Under standard assay conditions, the enzyme acted preferentially with NAD. It could also catalyze the reduction with NADP (which had a higher Km), at 18% of the rate observed for NAD. The following kinetic parameters were found: Km(NAD) = 20.0 ± 3.6 μM, Km(CHMSA) = 8.5 ± 1.8 μM, and Kd(enzyme–NAD complex) = 7.8 ± 2.0 μM. The product NADH acted as a competitive inhibitor against NAD.


1978 ◽  
Vol 169 (2) ◽  
pp. 265-276 ◽  
Author(s):  
David E. Woolley ◽  
Robert W. Glanville ◽  
Dennis R. Roberts ◽  
John M. Evanson

1. The neutral collagenase released into the culture medium by explants of human skin tissue was purified by ultrafiltration and column chromatography. The final enzyme preparation had a specific activity against thermally reconstituted collagen fibrils of 32μg of collagen degraded/min per mg of enzyme protein, representing a 266-fold increase over that of the culture medium. Electrophoresis in polyacrylamide disc gels showed it to migrate as a single protein band from which enzyme activity could be eluted. Chromatographic and polyacrylamide-gel-elution experiments provided no evidence for the existence of more than one active collagenase. 2. The molecular weight of the enzyme estimated from gel filtration and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis was approx. 60000. The purified collagenase, having a pH optimum of 7.5–8.5, did not hydrolyse the synthetic collagen peptide 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-d-Arg-OH and had no non-specific proteinase activity when examined against non-collagenous proteins. 3. It attacked undenatured collagen in solution at 25°C, producing the two characteristic products TCA(¾) and TCB(¼). Collagen types I, II and III were all cleaved in a similar manner by the enzyme at 25°C, but under similar conditions basement-membrane collagen appeared not to be susceptible to collagenase attack. At 37°C the enzyme attacked gelatin, producing initially three-quarter and one-quarter fragments of the α-chains, which were degraded further at a lower rate. As judged by the release of soluble hydroxyproline peptides and electron microscopy, the purified enzyme degraded insoluble collagen derived from human skin at 37°C, but at a rate much lower than that for reconstituted collagen fibrils. 4. Inhibition of the skin collagenase was obtained with EDTA, 1,10-phenanthroline, cysteine, dithiothreitol and sodium aurothiomaleate. Cartilage proteoglycans did not inhibit the enzyme. The serum proteins α2-macroglobulin and β1-anti-collagenase both inhibited the enzyme, but α1-anti-trypsin did not. 5. The physicochemical and enzymic properties of the skin enzyme are discussed in relation to those of other human collagenases.


1977 ◽  
Vol 55 (2) ◽  
pp. 140-145 ◽  
Author(s):  
Julian N. Kanfer ◽  
Richard A. Mumford ◽  
Srinivasa S. Raghavan

Some of the properties of a partially purified particle bound and soluble β-glucosidase (EC 3.2.1.21) from pig kidney were compared. The soluble β-glucosidase (1) hydrolyzed 4-methylumbelliferyl-β-D-glucoside (4-MU-β-D-glucoside) 17α-estradiol 3β-glucoside, 17α-estradiol 17β-glucoside, and salicin, but not glucosylceramide, (2) possessed a broad pH optimum (5.5–7.0), (3) had an isoelectric point of 4.9, and (4) was inhibited by Triton X-100. Several compounds were found to be competitive inhibitors of its hydrolytic activity, gluconolactam and estrone β-glucoside being the most effective. In contrast, a particulate β-glucosidase purified from the same tissue (1) had an acidic pH optimum (5.0), (2) was stimulated by sodium taurocholate and 'Gaucher's factor' for the hydrolysis of both 4-MU-β-glucoside and glucosylceramide, and (3) was capable of catalyzing a transglucosylation reaction employing 4-MU-β-D-glucoside or glucosylceramide as the glucosyl donor, and [l4C]ceramide as acceptor.


1978 ◽  
Vol 175 (3) ◽  
pp. 1079-1087 ◽  
Author(s):  
H Villarroya ◽  
J Williams ◽  
P Dey ◽  
S Villarroya ◽  
F Petek

Two beta-mannanases (beta-mannosidases, EC 3.2.1.25) purified from the germinated seeds of Trifolium repens by a procedure that included chromatography on hydroxyapatite, gel filtration on acrylamide/agarose (Ultragel 5/4) and preparative polyacrylamide-gel-electrophoresis. The final purification step completely resolved two beta-mannanases with distinct specificities, which were termed beta-mannanase I and beta-mannanase II. beta-Mannanase I was purified 1400-fold and beta-mannanase II 1000-fold. The purified enzymes showed a single protein band when examined by polyacrylamide-gel disc electrophoresis. beta-Mannanase I, apparent mol.wt. 43 000, accounted for 49% of the total activity recovered from the final step of purification. beta-Mannanase II, apparent mol.wt. 38 000, accounted for the remaining 51% of activity. Molecular-weight determinations were by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and by the electrophoretic method of Hendrick & Smith [(1968) Arch. Biochem. Biophys. 126, 155-164]. The substrate specificities of both enzymes were examined with the galactomannans of T. repens and of Medicago sativa, as well as with manno-oligosaccharides. The pH optimum was between pH 5.1 and 5.6 for both enzymes.


Sign in / Sign up

Export Citation Format

Share Document