Modification of biological activities of Ricinus communis agglutinin by cross-linking with formaldehyde

1984 ◽  
Vol 62 (4) ◽  
pp. 203-208 ◽  
Author(s):  
E. Turpin ◽  
J. Wantyghem ◽  
P. Beaudry ◽  
D. Néel ◽  
Y. Goussault

Formaldehyde treatment of Ricinus communis agglutinin, a nonmitogenic toxic 120 000 molecular weight (MW) lectin, yielded two distinct protein fractions: one was heterogeneous and contained high molecular weight lectin polymers (> 120 000), and the other was a homogeneous 120 000 MW protein. Both fractions lost their cytotoxicity after formaldehyde treatment and stimulated thymidine incorporation into lymphocytes. Binding of both treated lectin fractions to lymphocytes exhibited positive cooperativity, whereas binding of untreated lectin did not.

1982 ◽  
Vol 47 (03) ◽  
pp. 197-202 ◽  
Author(s):  
Kurt Huber ◽  
Johannes Kirchheimer ◽  
Bernd R Binder

SummaryUrokinase (UK) could be purified to apparent homogeneity starting from crude urine by sequential adsorption and elution of the enzyme to gelatine-Sepharose and agmatine-Sepharose followed by gel filtration on Sephadex G-150. The purified product exhibited characteristics of the high molecular weight urokinase (HMW-UK) but did contain two distinct entities, one of which exhibited a two chain structure as reported for the HMW-UK while the other one exhibited an apparent single chain structure. The purification described is rapid and simple and results in an enzyme with probably no major alterations. Yields are high enough to obtain purified enzymes for characterization of UK from individual donors.


Author(s):  
Shinji Yoshikawa ◽  
Lih-Geeng Chen ◽  
Morio Yoshimura ◽  
Yoshiaki Amakura ◽  
Tsutomu Hatano ◽  
...  

Abstract Our examination of high molecular weight polyphenolic constituents in the leaves of Barringtonia racemosa of the family Lecythidaceae uncovered five previously undescribed ellagitannins. One, barringtin M1 (1), among them was a hydrolysable tannin monomer, while remaining four, barringtins D1 (2), D2 (3), D3 (4) and barricyclin D1 (5), were all dimers. Barricyclin D1 had a first macrocyclic structure formed from casuarictin (6) and tellimagrandin I (7), and the other ellagitannins had structures related to 5. Two additional known phenolics, valoneic acid dilactone (8) and schimawalin A (9), were also isolated from the leaves. These results suggested that the leaves of B. racemosa is a natural resource rich in hydrolysable tannin oligomers.


1979 ◽  
Author(s):  
I. Cohen ◽  
T. Glaser

When platelet cytoplasmic Ca2+ is increased by the ionophore A 23187, there is the coincident appearance of a cross-linked polymer and the partial disappearance of five high molecular weight polypeptide bands (> 145,000). The glycoproteins show a partial disappearance of bands lb, IIb and IV and the total disappearance of hands la and Ilia. The disappearance of the protein bands, possibly contributing to the polymer formation, is prevented by histamine, aminoacetonltrile and cystamlne, which, as pseudodonor amines are known Inhibitors of factor XHIa-catalyzed cross-linking. 14C-histamine, at a tracer concentration, was incorporated into the polymer as well as into myosin, glycoproteins IIb and IIIa (α-actinln), actin and two unidentified low-molecular weight proteins. The polymer formed is also apparent in isolated membranes following the iono-phore-stimulated increase in intracellular Ca2+. These findings are unrelated to a proteolytic activity since the platelet Ca2+-dependent proteases are inhibited by leupep-tin. Ca2+-activation of a platelet cytosol transamidase would explain the data obtained. This platelet transamidase(s) may couple membrane proteins to cytoplasmic contra-tlle proteins. Thus, a new concept is proposed for the stabilization of platelet membranes and platelets as they form the hemostatic plug.


Blood ◽  
1982 ◽  
Vol 59 (3) ◽  
pp. 502-513 ◽  
Author(s):  
GE Davies ◽  
J Palek

Abstract We have examined platelet protein organization by treatment of intact resting or thrombin-activated platelets with two cross-linking reagents, diamide or dithiobis(succinimidyl propionate) (DTSP). Cross- linked complexes were separated by polyacrylamide gel electrophoresis in the absence of reducing agent and their composition determined after reductive cleavage and analysis in a second-dimensional gel. The most prominent cross-linked species produced by diamide treatment of of resting platelets are (A) cytoskeletal protein homopolymers, such as myosin heavy chain dimer and actin oligomers, and (B) high molecular weight material consisting of homo- or heteropolymers of cytoskeletal proteins and 230,000, 170,000, 100,000, 55,000, and 52,000 dalton proteins. DTSP treatment forms similar complexes and also cross-links membrane glycoproteins IIb and III into high molecular weight material. Thrombin activation of platelets before treatment with diamide or DTSP results in increased cross-linking of myosin and increased incorporation of several proteins, particularly myosin and glycoproteins IIb and III, into high molecular weight material. The results provide evidence for reorganization of cytoskeletal and membrane proteins during platelet function.


1944 ◽  
Vol 80 (6) ◽  
pp. 549-559 ◽  
Author(s):  
Gail Lorenz Miller ◽  
Max A. Lauffer ◽  
W. M. Stanley

Crude preparations of PR8 influenza virus, obtained by high-speed centrifugation, contain two electrophoretically distinct components. One of these, present to the extent of 10 to 20 per cent, was identified by electrophoresis, centrifuge, and activity tests, as an impurity similar to or identical with a high molecular weight acidic substance shown by Knight to be elaborated by normal uninfected embryos. The other component, present to the extent of 80 to 90 per cent, appeared to represent the active virus. The virus fraction was separated from the impurity by repeated fractional centrifugation. It then appeared homogeneous in the analytical centrifuge and in the Tiselius apparatus, and possessed an isoelectric point at pH 5.3 as measured by the micro-electrophoresis method.


Sign in / Sign up

Export Citation Format

Share Document