Pyruvate fermentation by Clostridium acetobutylicum

1989 ◽  
Vol 67 (10) ◽  
pp. 735-739 ◽  
Author(s):  
Rachid Janati-Idrissi ◽  
Anne-Marie Junelles ◽  
Abdellah El Kanouni ◽  
Henri Petitdemange ◽  
Robert Gay

Clostridium acetobutylicum ATCC 824 using pyruvate as the sole carbon source produced mainly acetate and butyrate as end products of fermentation. Acetate and butyrate kinase activities were higher in cells growing in the presence of pyruvate than glucose, whereas the level of the acetoacetate decarboxylase, an enzyme involved in solvent formation, was lower. Similar activities of glyceraldehyde-3-phosphate dehydrogenase were found in cells grown in pyruvate and glucose mediums. The transfer of C. acetobutylicum from pyruvate to glucose medium suggested that pyruvate represses the "solventogenesis."Key words: Clostridium acetobutylicum, pyruvic acid, kinase, acetoacetate decarboxylase.

2004 ◽  
Vol 70 (2) ◽  
pp. 798-803 ◽  
Author(s):  
Lothar Feustel ◽  
Stephan Nakotte ◽  
Peter Dürre

ABSTRACT The use of lacZ from Thermoanaerobacterium thermosulfurigenes (encoding β-galactosidase) and lucB from Photinus pyralis (encoding luciferase) as reporter genes in Clostridium acetobutylicum was analyzed with promoters of genes required for solventogenesis and acidogenesis. Both systems proved to be well suited and allowed the detection of differences in promoter strength at least up to 100-fold. The luciferase assay could be performed much faster and comes close to online measurement. Resequencing of lacZ revealed a sequence error in the original database entry, which resulted in β-galactosidase with an additional 31 amino acids. Cutting off part of the gene encoding this C terminus resulted in decreased enzyme activity. The lacZ reporter data showed that bdhA (encoding butanol dehydrogenase A) is expressed during the early growth phase, followed by sol (encoding butyraldehyde/butanol dehydrogenase E and coenzyme A transferase) and bdhB (encoding butanol dehydrogenase B) expression. adc (encoding acetoacetate decarboxylase) was also induced early. There is about a 100-fold difference in expression between adc and bdhB (higher) and bdhA and the sol operon (lower). The lucB reporter activity could be increased 10-fold by the addition of ATP to the assay. Washing of the cells proved to be important in order to prevent a red shift of bioluminescence in an acidic environment (for reliable data). lucB reporter measurements confirmed the expression pattern of the sol and ptb-buk (encoding phosphotransbutyrylase and butyrate kinase) operons as determined by the lacZ reporter and showed that the expression level from the ptb promoter is 59-fold higher than that from the sol operon promoter.


1981 ◽  
Vol 27 (11) ◽  
pp. 1209-1218 ◽  
Author(s):  
R. A. Smucker ◽  
J. J. Cooney

Cladosporium resinae was grown on glucose and then transferred to medium with glucose or with kerosene as the sole carbon source. Growth on hydrocarbon was associated with thinner cell walls in both hyphae and spores, with the presence of large vacuoles in cells, with the synthesis of microbodies, and with increased synthesis of catalase. Some vacuoles in hydrocarbon-grown cells contained small, spherical, electron-dense inclusions which were not observed in cells from glucose medium. Large, electron-dense bodies within vacuoles were observed in glucose-grown and in hydrocarbon-grown cells. A working model is proposed for oxidation of n-alkanes by C. resinae.


2005 ◽  
Vol 71 (1) ◽  
pp. 530-537 ◽  
Author(s):  
Yinsuo Zhao ◽  
Christopher A. Tomas ◽  
Fredrick B. Rudolph ◽  
Eleftherios T. Papoutsakis ◽  
George N. Bennett

ABSTRACT It has been suggested (L. H. Harris, R. P. Desai, N. E. Welker, and E. T. Papoutsakis, Biotechnol. Bioeng. 67:1-11, 2000) that butyryl phosphate (BuP) is a regulator of solventogenesis in Clostridium acetobutylicum. Here, we determined BuP and acetyl phosphate (AcP) levels in fermentations of C. acetobutylicum wild type (WT), degenerate strain M5, a butyrate kinase (buk) mutant, and a phosphotransacetylase (pta) mutant. A sensitive method was developed to measure BuP and AcP in the same sample. Compared to the WT, the buk mutant had higher levels of BuP and AcP; the BuP levels were high during the early exponential phase, and there was a peak corresponding to solvent production. Consistent with this, solvent formation was initiated significantly earlier and was much stronger in the buk mutant than in all other strains. For all strains, initiation of butanol formation corresponded to a BuP peak concentration that was more than 60 to 70 pmol/g (dry weight), and higher and sustained levels corresponded to higher butanol formation fluxes. The BuP levels never exceeded 40 to 50 pmol/g (dry weight) in strain M5, which produces no solvents. The BuP profiles were bimodal, and there was a second peak midway through solventogenesis that corresponded to carboxylic acid reutilization. AcP showed a delayed single peak during late solventogenesis corresponding to acetate reutilization. As expected, in the pta mutant the AcP levels were very low, yet this strain exhibited strong butanol production. These data suggest that BuP is a regulatory molecule that may act as a phosphodonor of transcriptional factors. DNA array-based transcriptional analysis of the buk and M5 mutants demonstrated that high BuP levels corresponded to downregulation of flagellar genes and upregulation of solvent formation and stress genes.


1992 ◽  
Vol 10 (2) ◽  
pp. 190-195 ◽  
Author(s):  
Lee D. Mermelstein ◽  
Neil E. Welker ◽  
George N. Bennett ◽  
Eleftherios T. Papoutsakis

2014 ◽  
Vol 39 (7) ◽  
pp. 3185-3197 ◽  
Author(s):  
Magdy Mohamed Khalil Bagy ◽  
Mohamed Hemida Abd-Alla ◽  
Fatthy Mohamed Morsy ◽  
Elhagag Ahmed Hassan

2020 ◽  
Vol 31 (1) ◽  
pp. 15
Author(s):  
Dr.Neihaya Heikmat Zaki

Twenty five samples were collected from the soil around the Tigris River from different locations in Iraqi cities, and 45 bacterial isolates were obtained. Three of these isolates were further tested for their degrading capacity of Bisphenol A (BPA) in Basal Mineral Medium, included: Pseudomonas orizohibtanis, Escherishia coli and Proteus penneri. The optimal temperature for the removal of BPA was determined at 20˚C, 37˚ and 45˚C for 1, 5, and 15 days, and the degradation increased up to a temperature of 37°C. Growth test was performed on isolated bacteria with BisPhenol A as the sole carbon source, and with increasing incubation time, the culture grew almost linearly to 24 hours. BPA decreased after 1days after incubating with tested bacterial isolates, and almost broken after 5 days, while it disappeared after 15 days at 37C, and Pseudomonas orizohibtanis exhibited the best degradation of BPA. The absorbance peaks in the UV region appeared at 222 and 276 nm and attributed to the benzene ring and triazine ring respectively. The end products of BPA degradation were analyzed by GCMS after 15 days of incubation. The chromatogram for Pseudomanas orizohibtanis showed three peaks at retention times of 70, 210 and 280 min, and referred to hexasiloxane, heptasiloxane, and Octasiloxane respectively. The present study was aimed to isolate bacteria from the soil of the Tigris River, and determined the ability to degrade Bisphenol-A, and characterized the environmental conditions of bacterial growth, and then analysis the products of the degradation by GC-MS.


Sign in / Sign up

Export Citation Format

Share Document