scholarly journals Resolving the TCA cycle and pentose-phosphate pathway of Clostridium acetobutylicum ATCC 824: Isotopomer analysis, in vitro activities and expression analysis

2010 ◽  
Vol 6 (3) ◽  
pp. 300-305 ◽  
Author(s):  
Scott B. Crown ◽  
Dinesh C. Indurthi ◽  
Woo Suk Ahn ◽  
Jungik Choi ◽  
Eleftherios T. Papoutsakis ◽  
...  
1968 ◽  
Vol 46 (4) ◽  
pp. 453-460 ◽  
Author(s):  
D. Mitchell ◽  
Michael Shaw

Mycelium of the flax rust fungus (Melampsora lini (Pers.) Lév.), grown on flax cotyledons in tissue culture, had a mean [Formula: see text]of 4.1 and a mean C6/C1 ratio of 0.14, measured after 4 hours in radioactive glucose. The C6/C1 ratio increased with time and also after treatment with 10−5 M 2,4-dinitrophenol. The relative labelling of the (80%) ethanol-soluble carbohydrates, and organic and amino acid fractions after incubation with glucose-1-, -2-, or -6-14C also indicated preferential release of C1 as 14CO2. Trehalose (unknown A) was tentatively identified in the carbohydrate fraction and was mildly radioactive after incubation of the mycelium with labelled glucose for 3 hours. The principal radioactive products of glucose in this fraction were two unknowns, B and C, which were tentatively identified as mannitol and arabitol. The labelling patterns were consistent with their formation from intermediates of the pentose phosphate pathway. The distribution of radioactivity derived from glucose in alanine, glutamate, and aspartate also indicated that hexose or triose units formed in the pentose phosphate pathway were converted to pyruvate, which either gave rise to alanine or was further oxidized in the tricarboxylic acid cycle. Incubation with pyruvate-1-, -2-, or -3-14C for 3 hours gave rise to 14CO2 and labelled alanine, glutamate, and aspartate in a manner consistent with the operation of the TCA cycle. Mannitol-1-6-14C was not metabolized to any appreciable extent in this period, but did give rise to 14CO2 and to several unidentified compounds in the carbohydrate fraction.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 440
Author(s):  
Xixi Guo ◽  
Shiwei Wu ◽  
Ningqiu Li ◽  
Qiang Lin ◽  
Lihui Liu ◽  
...  

Glucose is a main carbon and energy source for virus proliferation and is usually involved in the glycolysis, pentose phosphate pathway (PPP), and tricarboxylic acid cycle (TCA cycle) pathways. In this study, we investigated the roles of glucose-related metabolic pathways during the replication of infectious spleen and kidney necrosis virus (ISKNV), which has caused serious economic losses in the cultured Chinese perch (Siniperca chuatsi) industry. We found that ISKNV infection enhanced the metabolic pathways of the PPP and the TCA cycle at the early stage of the ISKNV infection cycle and enhanced the glycolysis pathway at the late stage of the ISKNV infection cycle though the comprehensive analysis of transcriptomics, proteomics, and metabolomics. The advanced results proved that ISKNV replication induced upregulation of aerobic glycolysis at the late stage of ISKNV infection cycle and aerobic glycolysis were required for ISKNV multiplication. In addition, the PPP, providing nucleotide biosynthesis, was also required for ISKNV multiplication. However, the TCA cycle involving glucose was not important and necessary for ISKNV multiplication. The results reported here provide new insights into viral pathogenesis mechanism of metabolic shift, as well as antiviral treatment strategies.


2012 ◽  
Vol 32 (9) ◽  
pp. 1788-1799 ◽  
Author(s):  
Eva M F Brekke ◽  
Anne B Walls ◽  
Arne Schousboe ◽  
Helle S Waagepetersen ◽  
Ursula Sonnewald

The brain is highly susceptible to oxidative injury, and the pentose phosphate pathway (PPP) has been shown to be affected by pathological conditions, such as Alzheimer's disease and traumatic brain injury. While this pathway has been investigated in the intact brain and in astrocytes, little is known about the PPP in neurons. The activity of the PPP was quantified in cultured cerebral cortical and cerebellar neurons after incubation in the presence of [2-13C]glucose or [3-13C]glucose. The activity of the PPP was several fold lower than glycolysis in both types of neurons. While metabolism of 13C-labeled glucose via the PPP does not appear to contribute to the production of releasable lactate, it contributes to labeling of tricarboxylic acid (TCA) cycle intermediates and related amino acids. Based on glutamate isotopomers, it was calculated that PPP activity accounts for ∼6% of glucose metabolism in cortical neurons and ∼4% in cerebellar neurons. This is the first demonstration that pyruvate generated from glucose via the PPP contributes to the synthesis of acetyl CoA for oxidation in the TCA cycle. Moreover, the fact that 13C labeling from glucose is incorporated into glutamate proves that both the oxidative and the nonoxidative stages of the PPP are active in neurons.


1969 ◽  
Vol 36 (3) ◽  
pp. 469-478 ◽  
Author(s):  
R. W. Smith ◽  
R. F. Glascock

SummaryA study was made of the changes in the rates of oxidation of the C(1), C(2) and C(6) atoms of glucose and in the pathways of glucose catabolism in sheep udder tissue in vitro which occurred when acetate and pyruvate were added.Whereas in rat mammary tissue the rate of oxidation of the C(1) atom of glucose was very much greater than that of the C(6) atom, the ratio of the rates of oxidation of these 2 atoms in sheep tissue was less than 2 when glucose was the only substrate.The addition of acetate resulted in an unequal stimulation of the oxidation of these 2 atoms, with the result that the ratio of their rates of oxidation was about doubled. The rate of oxidation of the C(2) atom was also increased.Acetate also increased the participation of the pentose phosphate pathway in glucose catabolism as measured by the incorporation of the C(1) and C(6) atoms of glucose into fatty acids, lactic acid and glycerol.Pyruvate produced little effect on the rate of oxidation of the C(1) atom but somewhat depressed that of the C(6) atom of glucose. At the same time, it caused a large increase in the participation of the pentose phosphate pathway.These results are discussed with reference to re-cycling of glucose carbon in the pentose phosphate pathway and to the relationship between that pathway and fatty acid synthesis. It is noted that the incorporation of glucose carbon into the 3 intermediates used gave values for the participation of that pathway which were in better agreement than was obtained in rat tissue. It is concluded that triose phosphates are more nearly in equilibrium in sheep than in rat mammary tissue.


1998 ◽  
Vol 275 (6) ◽  
pp. H2227-H2235 ◽  
Author(s):  
Tara M. Allen ◽  
Christopher D. Hardin

Although vascular smooth muscle (VSM) derives the majority of its energy from oxidative phosphorylation, controversy exists concerning which substrates are utilized by the tricarboxylic acid (TCA) cycle. We used 13C isotopomer analysis of glutamate to directly measure the entry of exogenous [13C]glucose and acetate and unlabeled endogenous sources into the TCA cycle via acetyl-CoA. Hog carotid artery segments denuded of endothelium were superfused with 5 mM [1-13C]glucose and 0–5 mM [1,2-13C]acetate at 37°C for 3–12 h. We found that both resting and contracting VSM preferentially utilize [1,2-13C]acetate compared with [1-13C]glucose and unlabeled substrates. The entry of glucose into the TCA cycle (30–60% of total entry via acetyl-CoA) exhibited little change despite alterations in contractile state or acetate concentrations ranging from 0 to 5 mM. We conclude that glucose and nonglucose substrates are important oxidative substrates for resting and contracting VSM. These are the first direct measurements of relative substrate entry into the TCA cycle of VSM during activation and may provide a useful method to measure alterations in VSM metabolism under physiological and pathophysiological conditions.


2020 ◽  
Vol 21 (20) ◽  
pp. 7589
Author(s):  
Tabinda Sidrat ◽  
Abdul Aziz Khan ◽  
Myeon-Don Joo ◽  
Yiran Wei ◽  
Kyeong-Lim Lee ◽  
...  

Oviduct flushing is enriched by a wide variety of nutrients that guide the 3–4 days journey of pre-implantation embryo through the oviduct as it develops into a competent blastocyst (BL). However, little is known about the specific requirement and role of these nutrients that orchestrate the early stages of embryonic development. In this study, we aimed to characterize the effect of in vitro-derived bovine oviduct epithelial cell (BOECs) secretion that mimics the in vivo oviduct micro-fluid like environment, which allows successful embryonic development. In this study, the addition of an in vitro derived BOECs-condition media (CM) and its isolated exosomes (Exo) significantly enhances the quality and development of BL, while the hatching ability of BLs was found to be high (48.8%) in the BOECs-Exo supplemented group. Surprisingly, BOECs-Exo have a dynamic effect on modulating the embryonic metabolism by restoring the pyruvate flux into TCA-cycle. Our analysis reveals that Exo treatment significantly upregulates the pyruvate dehydrogenase (PDH) and glutamate dehydrogenase (GLUD1) expression, required for metabolic fine-tuning of the TCA-cycle in the developing embryos. Exo treatment increases the influx into TCA-cycle by strongly suppressing the PDH and GLUD1 upstream inhibitors, i.e., PDK4 and SIRT4. Improvement of TCA-cycle function was further accompanied by higher metabolic activity of mitochondria in BOECs-CM and Exo in vitro embryos. Our study uncovered, for the first time, the possible mechanism of BOECs-derived secretion in re-establishing the TCA-cycle flux by the utilization of available nutrients and highlighted the importance of pyruvate in supporting bovine in vitro embryonic development.


2014 ◽  
Vol 306 (5) ◽  
pp. H709-H717 ◽  
Author(s):  
Claudio Vimercati ◽  
Khaled Qanud ◽  
Gianfranco Mitacchione ◽  
Danuta Sosnowska ◽  
Zoltan Ungvari ◽  
...  

In vitro studies suggested that glucose metabolism through the oxidative pentose phosphate pathway (oxPPP) can paradoxically feed superoxide-generating enzymes in failing hearts. We therefore tested the hypothesis that acute inhibition of the oxPPP reduces oxidative stress and enhances function and metabolism of the failing heart, in vivo. In 10 chronically instrumented dogs, congestive heart failure (HF) was induced by high-frequency cardiac pacing. Myocardial glucose consumption was enhanced by raising arterial glycemia to levels mimicking postprandial peaks, before and after intravenous administration of the oxPPP inhibitor 6-aminonicotinamide (80 mg/kg). Myocardial energy substrate metabolism was measured with radiolabeled glucose and oleic acid, and cardiac 8-isoprostane output was used as an index of oxidative stress. A group of five chronically instrumented, normal dogs served as control. In HF, raising glycemic levels from ∼80 to ∼170 mg/dL increased cardiac isoprostane output by approximately twofold, whereas oxPPP inhibition normalized oxidative stress and enhanced cardiac oxygen consumption, glucose oxidation, and stroke work. In normal hearts glucose infusion did not induce significant changes in cardiac oxidative stress. Myocardial tissue concentration of 6P-gluconate, an intermediate metabolite of the oxPPP, was significantly reduced by ∼50% in treated versus nontreated failing hearts, supporting the inhibitory effect of 6-aminonicotinamide. Our study indicates an important contribution of the oxPPP activity to cardiac oxidative stress in HF, which is particularly pronounced during common physiological changes such as postprandial glycemic peaks.


2011 ◽  
Vol 77 (22) ◽  
pp. 7984-7997 ◽  
Author(s):  
Daniel Amador-Noguez ◽  
Ian A. Brasg ◽  
Xiao-Jiang Feng ◽  
Nathaniel Roquet ◽  
Joshua D. Rabinowitz

ABSTRACTThe fermentation carried out by the biofuel producerClostridium acetobutylicumis characterized by two distinct phases. Acidogenesis occurs during exponential growth and involves the rapid production of acids (acetate and butyrate). Solventogenesis initiates as cell growth slows down and involves the production of solvents (butanol, acetone, and ethanol). Using metabolomics, isotope tracers, and quantitative flux modeling, we have mapped the metabolic changes associated with the acidogenic-solventogenic transition. We observed a remarkably ordered series of metabolite concentration changes, involving almost all of the 114 measured metabolites, as the fermentation progresses from acidogenesis to solventogenesis. The intracellular levels of highly abundant amino acids and upper glycolytic intermediates decrease sharply during this transition. NAD(P)H and nucleotide triphosphates levels also decrease during solventogenesis, while low-energy nucleotides accumulate. These changes in metabolite concentrations are accompanied by large changes in intracellular metabolic fluxes. During solventogenesis, carbon flux into amino acids, as well as flux from pyruvate (the last metabolite in glycolysis) into oxaloacetate, decreases by more than 10-fold. This redirects carbon into acetyl coenzyme A, which cascades into solventogenesis. In addition, the electron-consuming reductive tricarboxylic acid (TCA) cycle is shutdown, while the electron-producing oxidative (clockwise) right side of the TCA cycle remains active. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources (carbon and reducing power) from biomass production into solvent production.


Sign in / Sign up

Export Citation Format

Share Document