Cellular functions of ascorbic acid

1990 ◽  
Vol 68 (10) ◽  
pp. 1166-1173 ◽  
Author(s):  
Harish Padh

It has long been suspected that ascorbic acid is involved in many cellular reactions. This is evident from the multitude of seemingly unrelated symptoms seen in scurvy. However, until recently, our understanding of its involvement was confined to its role in the synthesis of collagen. Studies in the past few years have unveiled mechanisms of its actions in collagen formation and many other enzymatic reactions. In addition, numerous physiological responses are reportedly affected by ascorbic acid. From the well-characterized enzymatic reactions involving ascorbic acid, it has become clear that in animal cells the ascorbate does not seem to be directly involved in catalytic cycles. Rather its major function seems to keep prosthetic metal ions in their reduced form. The role of ascorbate as a reductant in these enzymatic reactions complements its other antioxidant functions which have been recently appreciated, including that as a scavenger of free radicals. Therefore, it seems that the major function of ascorbate is to protect tissues from harmful oxidative products and to keep certain enzymes in their required reduced forms. However, it remains unclear how the deficiency of ascorbate leads to the pathological symptoms found in scurvy.Key words: ascorbic acid, vitamin C, biochemical functions, antioxidant, recommended dietary allowances, hydroxylation.

Author(s):  
Arun Kumar ◽  
Reena V Saini ◽  
Adesh K Saini

Ascorbic acid (AA) or Vitamin C is an important antioxidant which participates in numerous cellular functions. Although in human plasma its concentration is in micromolars but it reaches millimolar concentrations in most of the human tissues. The high ascorbate cellular concentrations are generated and maintained by a specific sodium-dependent Vitamin C transporter type 2 (SVCT2, member of Slc23 family). Metabolic processes recycle Vitamin C from its oxidized forms (ascorbate) inside the cells. AA concentration is highest in the neurons of the central nervous system (CNS) of mammals, and deletion of its transporter affects mice brain and overall survival. In the CNS, intracellular ascorbate serves several functions including antioxidant protection, peptide amidation, myelin formation, synaptic potentiation, and protection against glutamate toxicity. SVCT2 maintains neuronal ascorbate content in CNS which has relevance for neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s disease. As ascorbate supplements decrease infarct size in ischemia-reperfusion injury and protect neurons from oxidative damage, it is a vital dietary antioxidant. The aim of this review is to assess the role of the SVCT2 in regulating neuronal ascorbate homeostasis in CNS and the extent to which ascorbate affects brain function as an antioxidant.


Development ◽  
1956 ◽  
Vol 4 (2) ◽  
pp. 167-175
Author(s):  
M. Abercrombie ◽  
M. H. Flint ◽  
D. W. James

A Wound in any mobile part of the skin of a mammal diminishes in area as it heals by a centripetal movement of the undamaged skin surrounding it. This movement, usually called wound contraction, depends on a pull exerted by the material within the wound (Lindquist, 1946; Abercrombie, Flint, & James, 1954; Billingham & Medawar, 1955). It is commonly believed that the effective force is developed by the newly formed collagen fibres. In a previous paper, however (Abercrombie, Flint, & James, 1954), we found that the course of the contraction of skin wounds in rats did not parallel the deposition of new collagen, chemically measured. This result, while certainly in no way conclusive by itself, suggested that the supposed role of collagen in contraction ought to be tested more stringently. This we have now done by measuring wounds made on guinea-pigs receiving a diet devoid of ascorbic acid.


Author(s):  
Robert M. Glaeser ◽  
Thea B. Scott

The carbon-replica technique can be used to obtain information about cell-surface structure that cannot ordinarily be obtained by thin-section techniques. Mammalian erythrocytes have been studied by the replica technique and they appear to be characterized by a pebbly or “plaqued“ surface texture. The characteristic “particle” diameter is about 200 Å to 400 Å. We have now extended our observations on cell-surface structure to chicken and frog erythrocytes, which possess a broad range of cellular functions, and to normal rat lymphocytes and mouse ascites tumor cells, which are capable of cell division. In these experiments fresh cells were washed in Eagle's Minimum Essential Medium Salt Solution (for suspension cultures) and one volume of a 10% cell suspension was added to one volume of 2% OsO4 or 5% gluteraldehyde in 0.067 M phosphate buffer, pH 7.3. Carbon replicas were obtained by a technique similar to that employed by Glaeser et al. Figure 1 shows an electron micrograph of a carbon replica made from a chicken erythrocyte, and Figure 2 shows an enlarged portion of the same cell.


2019 ◽  
Vol 24 (39) ◽  
pp. 4659-4667 ◽  
Author(s):  
Mona Fani ◽  
Milad Zandi ◽  
Majid Rezayi ◽  
Nastaran Khodadad ◽  
Hadis Langari ◽  
...  

MicroRNAs (miRNAs) are non-coding RNAs with 19 to 24 nucleotides which are evolutionally conserved. MicroRNAs play a regulatory role in many cellular functions such as immune mechanisms, apoptosis, and tumorigenesis. The main function of miRNAs is the post-transcriptional regulation of gene expression via mRNA degradation or inhibition of translation. In fact, many of them act as an oncogene or tumor suppressor. These molecular structures participate in many physiological and pathological processes of the cell. The virus can also produce them for developing its pathogenic processes. It was initially thought that viruses without nuclear replication cycle such as Poxviridae and RNA viruses can not code miRNA, but recently, it has been proven that RNA viruses can also produce miRNA. The aim of this articles is to describe viral miRNAs biogenesis and their effects on cellular and viral genes.


1991 ◽  
Vol 56 (4) ◽  
pp. 923-932
Author(s):  
Jana Stejskalová ◽  
Pavel Stopka ◽  
Zdeněk Pavlíček

The ESR spectra of peroxidase systems of methaemoglobin-ascorbic acid-hydrogen peroxide and methaemoglobin-haptoglobin complex-ascorbic acid-hydrogen peroxide have been measured in the acetate buffer of pH 4.5. For the system with methaemoglobin an asymmetrical signal with g ~ 2 has been observed which is interpreted as the perpendicular region of anisotropic spectrum of superoxide radical. On the other hand, for the system with methaemoglobin-haptoglobin complex the observed signal with g ~ 2 is symmetrical and is interpreted as a signal of delocalized electron. After realization of three repeatedly induced peroxidase processes the ESR signal of the perpendicular part of anisotropic spectrum of superoxide radical is distinctly diminished, whereas the signal of delocalized electron remains practically unchanged. An amino acid analysis of methaemoglobin along with results of the ESR measurements make it possible to derive a hypothesis about the role of haptoglobin in increasing of the peroxidase activity of methaemoglobin.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yanxia Zhan ◽  
Junxian Du ◽  
Zhihui Min ◽  
Li Ma ◽  
Wei Zhang ◽  
...  

AbstractHypoxia is a common phenomenon in solid tumors. The roles of exosomes from hypoxic breast cancer stroma are less studied. So, the study was aimed to investigate the role of exosomes from hypoxic cancer-associated fibroblasts (CAFs) cells in breast cancer. The circRNA array analysis was performed to screen differential expressed circRNAs between hypoxic and normoxic CAFs exosomes. Candidate circHIF1A (circ_0032138) was screened out and it was confirmed that circHIF1A was up-regulated in the exosomes from hypoxic CAFs and their exosomes. Through investigating cellular functions including cell proliferation and stem cell features, it was demonstrated that hypoxic CAFs exosomes transferred circHIF1A into breast cancer cells, which played an important role in cancer stem cell properties sponging miR-580-5p by regulating CD44 expression. In a summary, circHIF1A from hypoxic CAFs exosomes played an important role in stem cell properties of breast cancer. CircHIF1A may act as a target molecule of breast cancer therapy.


Author(s):  
Nikolett Bodnár ◽  
Katalin Várnagy ◽  
Lajos Nagy ◽  
Gizella Csire ◽  
Csilla Kállay

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Islam M. El-Garawani ◽  
Elsayed A. Khallaf ◽  
Alaa A. Alne-na-ei ◽  
Rehab G. Elgendy ◽  
Gaber A. M. Mersal ◽  
...  

AbstractImidacloprid (Imid), a systemic neonicotinoid insecticide, is broadly used worldwide. It is reported to contaminate aquatic systems. This study was proposed to evaluate oxidative stress and genotoxicity of Imid on Nile tilapia (Oreochromis niloticus) and the protective effect of ascorbic acid (Asc). O. niloticus juveniles (30.4 ± 9.3 g, 11.9 ± 1.3 cm) were divided into six groups (n = 10/replicate). For 21 days, two groups were exposed to sub-lethal concentrations of Imid (8.75 ppm, 1/20 of 72 h-LC50 and 17.5 ppm, 1/10 of 72 h-LC50); other two groups were exposed to Asc (50 ppm) in combination with Imid (8.75 and 17.5 ppm); one group was exposed to Asc (50 ppm) in addition to a group of unexposed fish which served as controls. Oxidative stress was assessed in the liver where the level of enzymatic activities including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in addition to mRNA transcripts and, Lipid peroxidation (LPO) were evaluated. Moreover, mitotic index (MI) and comet assay were performed, in addition, the erythrocytic micronucleus (MN), and nuclear abnormalities (NA) were observed to assess genotoxicity in fish. Imid exposure induced significant (p ˂ 0.05) changes in the antioxidant profile of the juveniles' liver by increasing the activities and gene expression of SOD, CAT and GPX as well as elevating the levels of LPO. DNA strand breaks in gill cells, erythrocytes and hepatocytes along with erythrocytic MN and NA were also significantly elevated in Imid-exposed groups. MI showed a significant (p ˂ 0.05) decrease associated with Imid exposure. Asc administration induced a significant amelioration towards the Imid toxicity (8.75 and 17.5 ppm). A significant protective potency against the genotoxic effects of Imid was evidenced in Asc co-treated groups. Collectively, results highlight the importance of Asc as a protective agent against Imid-induced oxidative stress and genotoxicity in O. niloticus juveniles.


Sign in / Sign up

Export Citation Format

Share Document