Kinetics of oxidation of serotonin by myeloperoxidase compounds I and II

1999 ◽  
Vol 77 (5) ◽  
pp. 449-457 ◽  
Author(s):  
H Brian Dunford ◽  
Yuchiong Hsuanyu

The oxidation of serotonin (5-hydroxytryptamine) by the myeloperoxidase intermediates compounds I and II was investigated by using transient-state spectral and kinetic measurements at 25.0 ± 0.1°C. Rapid scan spectra demonstrated that both compound I and compound II oxidize serotonin via one-electron processes. Rate constants for these reactions were determined using both sequential-mixing and single-mixing stopped-flow techniques. The second order rate constant obtained for the one-electron reduction of compound I to compound II by serotonin is (1.7 ± 0.1) × 107 M-1·s-1, and that for compound II reduction to native enzyme is (1.4 ± 0.1) × 106 M-1·s-1 at pH 7.0. The maximum pH of the compound I reaction with serotonin occurs in the pH range 7.0-7.5. At neutral pH, the rate constant for myeloperoxidase compound I reacting with serotonin is an order of magnitude larger than for its reaction with chloride, (2.2 ± 0.2) × 106 M-1·s-1. A direct competition of serotonin with chloride for myeloperoxidase compound I oxidation was observed. Our results suggest that serotonin may have a role to protect lipoproteins from oxidation and to prevent enzymes from inactivation caused by the potent oxidants HOCl and active oxygen species.Key words: serotonin oxidation, myeloperoxidase, chloride, competition of serotonin, blood platelets, neutrophils.

1971 ◽  
Vol 49 (18) ◽  
pp. 3059-3063 ◽  
Author(s):  
R. Roman ◽  
H. B. Dunford ◽  
M. Evett

The kinetics of the oxidation of iodide ion by horseradish peroxidase compound II have been studied as a function of pH at 25° and ionic strength of 0.11. The logarithm of the second-order rate constant decreases linearly from 2.3 × 105 to 0.1 M−1 s−1 with increasing pH over the pH range 2.7 to 9.0. The pH dependence of the reaction is explained in terms of an acid dissociation outside the pH range of the study.


1973 ◽  
Vol 51 (4) ◽  
pp. 582-587 ◽  
Author(s):  
M. L. Cotton ◽  
H. B. Dunford

In order to investigate the nature of compounds I and II of horseradish peroxidase, the kinetics were studied of ferrocyanide oxidation catalyzed by these compounds which were prepared from three different oxidizing agents. The pH dependence of the apparent second-order rate constant for ferrocyanide oxidation by compound I, prepared from ethyl hydroperoxide and m-chloroperbenzoic acid, was interpreted in terms of an ionization on the enzyme with a pKa = 5.3, identical to that reported previously for hydrogen peroxide. The second-order rate constant for the compound II-ferrocyanide reaction also showed the same pH dependence for the three oxidizing substrates. However, with more accurate results, the compound II-ferrocyanide reaction was reinterpreted in terms of a single ionization with pKa = 8.5. The same dependence of ferrocyanide oxidation on pH suggests structurally identical active sites for compounds I and II prepared from the three different oxidizing substrates.


1990 ◽  
Vol 68 (6) ◽  
pp. 965-972 ◽  
Author(s):  
Yuchiong Hsuanyu ◽  
H. Brian Dunford

Both cyclooxygenase and peroxidase reactions of prostaglandin H synthase were studied in the presence and absence of diethyldithiocarbamate and glycerol at 4 °C in phosphate buffer (pH 8.0). Diethyldithiocarbamate reacts with the high oxidation state intermediates of prostaglandin H synthase; it protects the enzyme from bleaching and loss of activity by its ability to act as a reducing agent. For the reaction of diethyldithiocarbamate with compound I, the second-order rate constant K2,app, was found to fall within the range of 5.8 × 106 ± 0.4 × 106 M−1∙s−1 < K2,app < 1.8 × 107 ± 0.1 × 107 M−1∙s−1. The reaction of diethyldithiocarbamate with compound II showed saturation behavior suggesting enzyme–substrate complex formation, with kcat = 22 ± 3 s−1, Km = 67 ± 10 μM, and the second-order rate constant k3,app = 2.0 × 105 ± 0.2 × 105 M−1∙s−1. In the presence of both diethyldithiocarbamate and 30% glycerol, the parameters for compound II are kcat = 8.8 ± 0.5 s−1, Km = 49 ± 7 μM, and k3,app = 1.03 × 105 ± 0.07 × 105 M−1∙s−1. The spontaneous decay rate constants of compounds I and II (in the absence of diethyldithiocarbamate) are 83 ± 5 and 0.52 ± 0.05 s−1, respectively, in the absence of glycerol; in the presence of 30% glycerol they are 78 ± 5 and 0.33 ± 0.02 s−1, respectively. Neither cyclooxygenase activity nor the rate constant for compound I formation using 5-phenyl-4-pentenyl-1-hydroperoxide is altered by the presence of diethyldithiocarbamate. It is suggested that kinetic studies on this enzyme can be performed in the presence of diethyldithiocarbamate, if one is cognizant of the rate of reaction of the stabilizing agent with compounds I and II and corrects for it if necessary.Key words: prostaglandin H synthase, diethyldithiocarbamate, cyclooxygenase, peroxidase, stabilizing agents.


1971 ◽  
Vol 49 (10) ◽  
pp. 1165-1171 ◽  
Author(s):  
R. James Maguire ◽  
H. Brian Dunford ◽  
Martin Morrison

The kinetics of the formation of the primary lactoperoxidase – hydrogen peroxide compound (compound I) at 25 °C have been studied over the pH range 3.0–10.8 by steady state methods. The second-order rate constant k1 is pH-independent over the pH region investigated, having a value of (9.2 ± 0.9) × 106M−1s−1. An anomalous effect of formate buffer on the kinetics of the formation of compound I is reported.


1992 ◽  
Vol 45 (12) ◽  
pp. 1943 ◽  
Author(s):  
SJ Dunne ◽  
RC Burns ◽  
GA Lawrance

Oxidation of Ni2+,aq, by S2O82- to nickel(IV) in the presence of molybdate ion, as in the analogous manganese system, involves the formation of the soluble heteropolymolybdate anion [MMogO32]2- (M = Ni, Mn ). The nickel(IV) product crystallized as (NH4)6 [NiMogO32].6H2O from the reaction mixture in the rhombohedra1 space group R3, a 15.922(1), c 12.406(1) � ; the structure was determined by X-ray diffraction methods, and refined to a residual of 0.025 for 1741 independent 'observed' reflections. The kinetics of the oxidation were examined at 80 C over the pH range 3.0-5.2; a linear dependence on [S2O82-] and a non-linear dependence on l/[H+] were observed. The influence of variation of the Ni/Mo ratio between 1:10 and 1:25 on the observed rate constant was very small at pH 4.5, a result supporting the view that the precursor exists as the known [NiMo6O24H6]4- or a close analogue in solution. The pH dependence of the observed rate constant at a fixed oxidant concentration (0.025 mol dm-3) fits dequately to the expression kobs = kH [H+]/(Ka+[H+]) where kH = 0.0013 dm3 mol-1 s-1 and Ka = 4-0x10-5. The first-order dependence on peroxodisulfate subsequently yields a second-order rate constant of 0.042 dm3 mol-1 s-1. Under analogous conditions, oxidation of manganese(II) occurs eightfold more slowly than oxidation of nickel(II), whereas oxidation of manganese(II) by peroxomonosulfuric acid is 16-fold faster than oxidation by peroxodisulfate under similar conditions.


1992 ◽  
Vol 70 (8) ◽  
pp. 2224-2233 ◽  
Author(s):  
Keith Vaughan ◽  
Donald L. Hooper ◽  
Marcus P. Merrin

The kinetics of hydyrolysis of a series of 1-aryl-3-aryloxymethyl-3-methyltriazenes, Ar-N=N-NMe-CH2OAr′, was studied over the pH range 2–7.5. Reactions were followed by the change in UV absorbance spectra of the triazenes. The aryloxymethyltriazenes decompose more slowly at pH 7.5 than the hydroxymethyltriazenes, Ar-N=NMe-CH2OH; the hydrolysis is favoured by the presence of an electron-withdrawing group in Ar′. A mixed isopropanol/buffer system was developed in order to improve solubility of the aryloxymethyl triazenes. Lowering the pH caused an increase in the rate of hydrolysis and under strongly acidic conditions an electron-withdrawing group in Ar′ actually slows down the reaction. A Hammett plot of the pseudo-first-order rate constant, kobs, is curved, indicating that two or more mechanisms operate simultaneously and that the contribution of each mechanism is substituent-dependent. A plot of kobs vs. [buffer] is linear; the slope of the plot affords the rate constant, kb for the buffer-catalyzed reaction for each substituent. A Hammett plot of kb vs. σ is linear with ρ = +0.55, suggesting that the buffer-catalyzed reaction involves nucleophilic displacement of the phenoxy group by the buffer anion. Further analysis afforded the specific acid-catalyzed rate constants, [Formula: see text], for each substituent; this component of the reaction has a negative ρ, consistent with a mechanism involving protonation at the ether oxygen. The postulation that specific acid catalysis is a component of the reaction mechanism was confirmed by the observation of a solvent deuterium isotope effect, 2.28 > kH/kD > 1.60. Only the p-NO2 and p-CN phenyloxymethyltriazenes showed any spontaneous decomposition.


1994 ◽  
Vol 72 (10) ◽  
pp. 2159-2162 ◽  
Author(s):  
Weimei Sun ◽  
Xiaoying Ji ◽  
Larry J. Kricka ◽  
H. Brian Dunford

The rate constants for the reactions of horseradish peroxidase compound I (k1) and compound II (k2) with three 4-substituted arylboronic acids, which enhance chemiluminescence in the horseradish peroxidase catalyzed oxidation of luminol by hydrogen peroxide, were determined at pH 8.6, total ionic strength 0.11 M, using stopped-flow kinetic measurements. For comparison, the rate constants of the reactions of 4-iodophenol with compounds I and II were also determined under the same experimental conditions. The three arylboronic acid derivatives and their rate constants are: 4-biphenylboronic acid, k1 = (1.21 ± 0.08) × 106 M−1 s−1, k2 = (4.6 ± 0.2) × 105 M−1 s−1; 4-bromophenylboronic acid, k1 = (5.5 ± 0.2) × 104 M−1 s−1, k2 = (3.6 ± 0.2) × 104 M−1 s−1; and 4-iodophenylboronic acid, k1 = (1.1 ± 0.2) × 105 M−1 s−1, k2 = (1.3 ± 0.1) × 104 M−1 s−1. 4-Biphenylboronic acid, which shows comparable luminescent enhancement to 4-iodophenol, has the highest reactivity in the reduction of both compounds I and II among the three arylboronic acid derivatives tested.


1970 ◽  
Vol 48 (11) ◽  
pp. 1249-1259 ◽  
Author(s):  
Leticia Rao ◽  
T. Hofmann

The reaction of elastase with trinitrobenzene sulfonic acid was investigated in the pH range 9–12. Elastase was found to be inactivated by 2,4,6-trinitrobenzene sulfonic acid. The pH dependence of the pseudo first-order inactivation rate constant showed a pK of 10.3 and gave a Hill plot coefficient of 1.15. Trinitrophenol did not inactivate the enzyme. These results indicate that the inactivation is due to the covalent reaction of trinitrobenzene sulfonic acid with a single group in the enzyme. This group is not the N-terminal since the loss of N-terminal valine was considerably slower than the loss of activity at pH 10.5. The inactivation of elastase with 2,4-dinitrofluorobenzene also showed no correlation with the loss of the N-terminal. When the enzyme was exhaustively treated and fully inactivated with trinitrobenzene sulfonic acid at pH 10.5, the N-terminal valine and two out of three lysine residues were trinitrophenylated. No evidence for the loss of histidine was found. One of the tyrosine residues may be trinitrophenylated as judged from the molar extinction of the trinitrophenylated protein, but it has not been possible to isolate a trinitrophenylated tyrosine-containing peptide. The results can be interpreted in one of two ways: (a) trinitrophenylation of a group with a pK of 10.3, not involved in the activity, inactivates because the introduction of the trinitrophenyl residue causes a denaturation of the enzyme; or (b) a group with a pK of 10.3 controls the active conformation of the enzyme. The results do not exclude the possibility that the N-terminal plays an important role in the activity of the enzyme. Below pH 10.5 the reactivity of the N-terminal is low, indicating that it is buried.At pH 9.0 only the ε-amino group of lysine in position 224 reacted with trinitrobenzene sulfonic acid and full activity was retained. The second-order rate constant for the trinitrophenylation of this group was 25 times higher than that of the ε-amino group of the α-N-benzoyllysine.


1978 ◽  
Vol 56 (13) ◽  
pp. 1792-1795 ◽  
Author(s):  
Ronald Kluger ◽  
David C. Pire ◽  
Jik Chin

Dimethyl acetylphosphonate (DAP) is rapidly cleaved in water to acetate and dimethylphosphonic acid. The half time for reaction at pH 7, 25 °C is estimated to be 3 s. The reaction is first order in hydroxide ion concentration and first order in DAP concentration. Rates of reaction were measured over the pH range 3.8 to 6.5 at 25 °C, 6.5 and 7.0 at 5 °C, 4.5 to 6.5 at 35 °C, and 4.5 to 6.0 at 45 °C. The average observed second-order rate constant at 25 °C is 2.4 × 106M−1 s−1. DAP is converted rapidly to a hydrated carbonyl adduct. The mechanism for the formation of the observed products is proposed to be analogous to cleavage reactions of other carbonyl hydrates, proceeding from a monoanion conjugate in this case. The estimated rate constant for the unimolecular cleavage of the carbonyl hydrate anion is 2 × 103 s−1. The rapid hydrolysis of DAP results from energetically favourable formation of a hydrate due to the electronic effect of the phosphonate diester. This effect also promoles ionization of the hydrate. The ionized hydrate readily expels the phosphonate diester to achieve the overall rapid hydrolysis.


1978 ◽  
Vol 175 (1) ◽  
pp. 239-249 ◽  
Author(s):  
D Barber ◽  
S R Parr ◽  
C Greenwood

The binding of cyanide to both oxidized and ascorbate-reduced forms of Pseudomonas cytochrome c-551 oxidase was investigated. Spectral studies on the oxidized enzyme and its apoprotein showed that the ligand can bind to both the c and d, haem components of the molecule, and kinetic observations indicated that both chromophores reacted, under a variety of conditions, with very similar rates. Cyanide combination velocities were dependent on ligand concentration, and increasing the pH also accelerated the reaction; the second-order rate constant was estimated as approx. 0.2M-1 . s-1 at pH 7.0. The binding of cyanide to the protein was observed to have a considerable influence on reduction of the enzyme by ascorbate. Spectral and kinetic observations have revealed that the species haem d13+-cyanide and any unbound haem c may react relatively rapidly with the reductant, but the behaviour of cyanide-bound haem c indicates that it may not be reduced without prior dissociation of the ligand, which occurs relatively slowly. The reaction of reduced Pseudomonas cytochrome oxidase with cyanide is radically different from that of the oxidized protein. In this case the ligand only binds to the haem d1 component and reacts much more rapidly. Stopped-flow kinetic measurements showed the binding to be biphasic in form. Both the rates of these processes were dependent on cyanide concentration, with the fast phase having a second-order rate constant of 9.3 × 10(5) M-1 . s-1 and the slow phase one of 2.3 × 10(5) M-1 . s-1. The relative proportions of the two phases also showed a dependency on cyanide concentration, the slower phase increasing as the cyanide concentration decreased. Computer simulations indicate that a reaction scheme originally proposed for the reaction of the enzyme with CO is capable of providing a reasonable explanation of the experimental results. Static-titration data of the reduced enzyme with with cyanide indicated that the binding was non-stoicheiometric, the ligand-binding curve being sigmoidal in shape. A Hill plot of the results yielded a Hill coefficient of 2.6.


Sign in / Sign up

Export Citation Format

Share Document