The Schrödinger–Riccati equation. The ground-state energy of Be I

2002 ◽  
Vol 80 (9) ◽  
pp. 1053-1057 ◽  
Author(s):  
S Fraga ◽  
JM García de la Vega ◽  
E S Fraga

The Schrödinger–Riccati equation has been used for the prediction of the ground-state energy of Be I. A statistical calculation yields a value of –14.670 hartree, with a maximum relative error of 0.02% (in absolute value) with respect to the exact energy of –14.667 36 hartree. PACS Nos.: 31.25Eb, 31.10+z, 02.70-c, 31.15Bs

1997 ◽  
Vol 11 (13) ◽  
pp. 1545-1563
Author(s):  
Miguel A. Martín-Delgado ◽  
Germán Sierra

We propose an interpolating ansatz between the strong coupling and weak coupling regimes of a system of spinless interacting fermions in 1D and 2D lattices at half-filling. We address relevant issues such as the existence of Long Range Order, quantum phase transitions and the evaluation of ground state energy. In 1D our method is capable of unveiling the existence of a critical point in the coupling constant at (t/U) c =0.7483 as in fact occurs in the exact solution at a value of 0.5. In our approach this phase transition is described as an example of Bifurcation Phenomena in the variational computation of the ground state energy. In 2D the van Hove singularity plays an essential role in changing the asymptotic behaviour of the system for large values of t/U. In particular, the staggered magnetization for large t/U does not display the Hartree–Fock law [Formula: see text] but instead we find the law [Formula: see text]. Moreover, the system does not exhibit bifurcation phenomena and thus we do not find a critical point separating a CDW state from a fermion "liquid" state.


1970 ◽  
Vol 48 (2) ◽  
pp. 147-149 ◽  
Author(s):  
F. David Peat

Certain lower bounds to the ground state energy of N-fermion systems have been derived in the literature using the properties of reduced density matrices.It is indicated that while some good approximations to the energy may be obtained by similar consideration the rigorous lower bound expressions lie too far below the exact energy to prove generally useful.


2018 ◽  
Vol 64 (4) ◽  
pp. 399
Author(s):  
Norberto Aquino ◽  
Alejandro Rojas ◽  
Henry Montgomery Jr.

We computed accurate values for the ground state energy of a hydrogen atom by a finite spherical barrier of height V0 as a function of the confinement radius . We consider the nucleus as a sphere with a uniform charge distribution instead of as a point particle. The contribution to the ground state energy due to the finite nuclear size is computed as a function of the confinement radius,  and the height of the barrier, V0, using time-independent perturbation theory. For an impenetrable cavity with .5 au, we found that this energy correction is fifty times higher than the corresponding value for the free hydrogen atom. For a finite value of V0,we found that the maximum of the energy correction is reached at a value  which very is close to the position at which the electron density is most compact around to the nucleus. This is confirmed though the Shannon entropy in configuration space.


1993 ◽  
Vol 07 (16) ◽  
pp. 1111-1117
Author(s):  
V.V. ONOOCHIN

The functional of the ground-state energy of large polarons is considered. After a canonical transformation and elimination of the field oscillators variables, the functional is presented in form convenient for further analysis. One can conclude that the type of ground state of each field oscillator is the coherent state.


1994 ◽  
Vol 4 (9) ◽  
pp. 1281-1285 ◽  
Author(s):  
P. Sutton ◽  
D. L. Hunter ◽  
N. Jan

2007 ◽  
Vol 21 (24) ◽  
pp. 1635-1642
Author(s):  
MIAN LIU ◽  
WENDONG MA ◽  
ZIJUN LI

We conducted a theoretical study on the properties of a polaron with electron-LO phonon strong-coupling in a cylindrical quantum dot under an electric field using linear combination operator and unitary transformation methods. The changing relations between the ground state energy of the polaron in the quantum dot and the electric field intensity, restricted intensity, and cylindrical height were derived. The numerical results show that the polar of the quantum dot is enlarged with increasing restricted intensity and decreasing cylindrical height, and with cylindrical height at 0 ~ 5 nm , the polar of the quantum dot is strongest. The ground state energy decreases with increasing electric field intensity, and at the moment of just adding electric field, quantum polarization is strongest.


2017 ◽  
Vol 31 (07) ◽  
pp. 1750071
Author(s):  
Z. D. Vatansever ◽  
S. Sakiroglu ◽  
I. Sokmen

In this paper, the effects of a repulsive scattering center on the ground-state energy and spin properties of a three-electron parabolic quantum dot are investigated theoretically by means of configuration interaction method. Phase transition from a weakly correlated regime to a strongly correlated regime is examined from several strengths and positions of Gaussian impurity. Numerical results reveal that the transition from spin-1/2 to spin-3/2 state depends strongly on the location of the impurity which accordingly states the controllability of the spin polarization. Moreover, broken circular symmetry results in more pronounced electronic charge localization.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Simeon Hellerman ◽  
Nozomu Kobayashi ◽  
Shunsuke Maeda ◽  
Masataka Watanabe

Abstract As a sequel to previous work, we extend the study of the ground state configuration of the D = 3, Wilson-Fisher conformal O(4) model. In this work, we prove that for generic ratios of two charge densities, ρ1/ρ2, the ground-state configuration is inhomogeneous and that the inhomogeneity expresses itself towards longer spatial periods. This is the direct extension of the similar statements we previously made for ρ1/ρ2 ≪ 1. We also compute, at fixed set of charges, ρ1, ρ2, the ground state energy and the two-point function(s) associated with this inhomogeneous configuration on the torus. The ground state energy was found to scale (ρ1 + ρ2)3/2, as dictated by dimensional analysis and similarly to the case of the O(2) model. Unlike the case of the O(2) model, the ground also strongly violates cluster decomposition in the large-volume, fixed-density limit, with a two-point function that is negative definite at antipodal points of the torus at leading order at large charge.


2005 ◽  
Vol 19 (30) ◽  
pp. 1793-1802 ◽  
Author(s):  
M. MODARRES

We investigate the possible angular momentum, l, dependence of the ground state energy of normal liquid 3 He . The method of lowest order constrained variational (LOCV) which includes the three-body cluster energy and normalization constraint (LOCVE) is used with angular momentum dependent two-body correlation functions. A functional minimization is performed with respect to each l-channel correlation function. It is shown that this dependence increases the binding energy of liquid 3 He by 8% with respect to calculations without angular momentum dependent correlation functions. The l=0 state has completely different behavior with respect to other l-channels. It is also found that the main contribution from potential energy comes from the l=1 state (p-waves) and the effect of l≥11 is less than about 0.1%. The effective interactions and two-body correlations in different channels are being discussed. Finally we conclude that this l-dependence can be verified experimentally by looking into the magnetization properties of liquid helium 3 and interatomic potentials.


Sign in / Sign up

Export Citation Format

Share Document