scholarly journals Holography and fermions at a finite chemical potentialThis paper was presented at the Theory CANADA 4 conference, held at Centre de recherches mathématiques, Montréal, Québec, Canada on 4–7 June 2008.

2009 ◽  
Vol 87 (3) ◽  
pp. 271-277 ◽  
Author(s):  
Moshe Rozali ◽  
Lionel Brits

We review the Sakai–Sugimoto model of holographic QCD at zero temperature and finite chemical potential, comparing the results to those expected at large-Nc QCD, and those in a closely related holographic model. We find that as the baryon chemical potential is increased above a critical value, there is a phase transition to a nuclear matter phase, the details of which depend on the model. We argue that the nuclear matter phase is necessarily inhomogeneous to arbitrarily high density, which suggests an explanation of the “chiral density wave” instability of the quark Fermi surface in large-Nc QCD. Some details of the instanton distribution in the holographic dual are reminiscent of a Fermi surface. This short manuscript summarizes a talk given by M.R. at Theory CANADA 4 conference and is based largely (but not entirely) on the results of (Rozali et al. JHEP. 53, 01 (2008)).

2013 ◽  
Vol 22 (11) ◽  
pp. 1350077 ◽  
Author(s):  
TRAN HUU PHAT ◽  
NGUYEN TUAN ANH ◽  
PHUNG THI THU HA

We study systematically various types of phase transitions in nuclear matter at finite temperature T and baryon chemical potential μ based on the extended linear sigma model with nucleon degrees of freedom. It is shown that there are three types of phase transitions in nuclear matter: the chiral symmetry nonrestoration (SNR) at high temperature, the well-known liquid–gas (LG) phase transition at sub-saturation density and the Lifshitz phase transition (LPT) from the fully-gapped state to the state with Fermi surface. Their phase diagrams are established in the (T, μ)-plane and their physical properties are investigated in detail. The relationship between the chiral phase transition and the LG phase transition in nuclear matter is discussed.


2021 ◽  
Vol 57 (7) ◽  
Author(s):  
Umut Gürsoy

AbstractWe review the holographic approach to electromagnetic phenomena in large N QCD. After a brief discussion of earlier holographic models, we concentrate on the improved holographic QCD model extended to involve magnetically induced phenomena. We explore the influence of magnetic fields on the QCD ground state, focusing on (inverse) magnetic catalysis of chiral condensate, investigate the phase diagram of the theory as a function of magnetic field, temperature and quark chemical potential, and, finally discuss effects of magnetic fields on the quark–anti-quark potential, shear viscosity, speed of sound and magnetization.


2000 ◽  
Vol 14 (10) ◽  
pp. 345-354 ◽  
Author(s):  
RUI XIONG ◽  
QINGMING XIAO ◽  
JING SHI ◽  
HAILIN LIU ◽  
WUFENG TANG ◽  
...  

The charge density wave instability in the quasi-two-dimensional conductor thallium purple molybdenum bronze TlMo 6 O 17 was carefully examined by studying the temperature dependence of resistivity, thermoelectric power (TEP) behavior and magnetic susceptibility. A metal-to-metal transition was confirmed near 110 K in TlMo 6 O 17 due to the partial opening of a gap at the Fermi surface and the driving of charge density wave.


2022 ◽  
Vol 258 ◽  
pp. 07004
Author(s):  
Niko Jokela

The holographic models for dense QCD matter work surprisingly well. A general implication seems that the deconfinement phase transition dictates the maximum mass of neutron stars. The nuclear matter phase turns out to be rather stiff which, if continuously merged with nuclear matter models based on effective field theories, leads to the conclusion that neutron stars do not have quark matter cores in the light of all current astrophysical data. We comment that as the perturbative QCD results are in stark contrast with strong coupling results, any future simulations of neutron star mergers incorporating corrections beyond ideal fluid should proceed cautiously. For this purpose, we provide a model which treats nuclear and quark matter phases in a unified framework at strong coupling.


2014 ◽  
Vol 23 (05) ◽  
pp. 1450031
Author(s):  
Tran Huu Phat ◽  
Nguyen Van Thu

Starting from an effective model of asymmetric nuclear matter we show that at finite temperature T and baryon chemical potential μB there exists a topological phase transition from state of non-Fermi liquid to that of Fermi liquid which is protected by winding numbers. At low μB the transition is first-order, then extends to a second-order phase transition at larger μB through a tri-critical point. The isospin dependences of the tri-critical point and the phase diagram in the (T, μB)-plane are established. The distinction between this type of phase transition and the similar phenomenon caused by the Silver Blaze property (SBP) at T = 0 is confirmed for isospin varying from 0 to 1. We reveal that the topological phase transition could emerge in a large class of nuclear theories.


Science ◽  
1991 ◽  
Vol 252 (5002) ◽  
pp. 96-98 ◽  
Author(s):  
M. -H. WHANGBO ◽  
E. CANADELL ◽  
P. FOURY ◽  
J. -P. POUGET

2022 ◽  
Vol 258 ◽  
pp. 07005
Author(s):  
Kazuo Ghoroku ◽  
Kouji Kashiwa ◽  
Yoshimasa Nakano ◽  
Motoi Tachibana ◽  
Fumihiko Toyoda

In a holographic model, which was used to investigate the color superconducting phase of QCD, a dilute gas of instantons is introduced to study the nuclear matter. The free energy of the nuclear matter is computed as a function of the baryon chemical potential in the probe approximation. Then the equation of state is obtained at low temperature. Using the equation of state for the nuclear matter, the Tolman-Oppenheimer-Volkov equations for a cold compact star are solved. We find the mass-radius relation of the star, which is similar to the one for quark star. This similarity implies that the instanton gas given here is a kind of self-bound matter.


Sign in / Sign up

Export Citation Format

Share Document