Unsteady flow of a generalized Oldroyd-B fluid due to an infinite plate subject to a time-dependent shear stress

2010 ◽  
Vol 88 (9) ◽  
pp. 675-687 ◽  
Author(s):  
D. Vieru ◽  
Corina Fetecau ◽  
C. Fetecau

The unsteady flow of an incompressible generalized Oldroyd-B fluid induced by an infinite plate subject to a time-dependent shear-stress is studied by means of the Fourier cosine and Laplace transforms. The solutions that have been obtained, written under integral and series form in terms of the generalized Ga,b,c(·,t) functions, are presented as a sum of the Newtonian solutions and the corresponding non-Newtonian contributions. They satisfy all imposed initial and boundary conditions, and for λ and λr → 0 reduce to the Newtonian solutions. Furthermore, the similar solutions for generalized Maxwell fluids as well as those for ordinary fluids are also obtained as limiting cases of general solutions. Finally, to reveal some relevant physical aspects of the obtained results, the diagrams of the velocity field v(y, t) have been depicted against y for different values of t and of the material and fractional parameters.

2011 ◽  
Vol 66 (12) ◽  
pp. 753-759 ◽  
Author(s):  
Constantin Fetecau ◽  
Corina Fetecau ◽  
Mehwish Rana

General solutions corresponding to the unsteady motion of second-grade fluids induced by an infinite plate that applies a shear stress ƒ (t) to the fluid are established. These solutions can immediately be reduced to the similar solutions for Newtonian fluids. They can be used to obtain known solutions from the literature or any other solution of this type by specifying the function ƒ (.). Furthermore, in view of a simple remark, general solutions for the flow due to a moving plate can be developed.


2010 ◽  
Vol 51 (4) ◽  
pp. 416-429 ◽  
Author(s):  
W. AKHTAR ◽  
CORINA FETECAU ◽  
A. U. AWAN

AbstractThe Poiseuille flow of a generalized Maxwell fluid is discussed. The velocity field and shear stress corresponding to the flow in an infinite circular cylinder are obtained by means of the Laplace and Hankel transforms. The motion is caused by the infinite cylinder which is under the action of a longitudinal time-dependent shear stress. Both solutions are obtained in the form of infinite series. Similar solutions for ordinary Maxwell and Newtonian fluids are obtained as limiting cases. Finally, the influence of the material and fractional parameters on the fluid motion is brought to light.


Author(s):  
Mario F. Letelier ◽  
Juan S. Stockle ◽  
Dennis A. Siginer

In this paper it is analyzed the effects on the flow of the time-variation of Herschel-Bulkley model of fluid constitutive parameters. In this way, the influence of a varying magnetic field on the unsteady flow of a magnetic fluid is explored. Yield stress, viscosity and power index are assumed time-dependent. In particular, linear variations in time of these parameters are considered. The characteristics of the velocity field is analyzed for different values of the constants that determine the time structure of the constitutive parameters.


2010 ◽  
Vol 15 (4) ◽  
pp. 437-444 ◽  
Author(s):  
M. Kamran ◽  
M. Imran ◽  
M. Athar

Here the velocity field and the associated tangential stress corresponding to the rotational flow of a generalized second grade fluid within an infinite circular cylinder are determined by means of the Laplace and finite Hankel transforms. At time t = 0 the fluid is at rest and the motion is produced by the rotation of the cylinder around its axis with a time dependent angular velocity Ωt. The solutions that have been obtained are presented under series form in terms of the generalized G-functions. The similar solutions for the ordinary second grade and Newtonian fluids, performing the same motion, are obtained as special cases of our general solution.


2014 ◽  
Vol 518 ◽  
pp. 114-119 ◽  
Author(s):  
Chun Rui Li ◽  
Lian Cun Zheng

In this paper, based on the fractional model, we present an investigation on the couette flow of a generalized Oldroyd-B fluid within an infinite cylinder subject to a time-dependent shear stress which is affected by the internal constantly decelerated pressure gradient. By using the fractional derivatives Laplace and finite Hankel transforms, the obtained solutions for the velocity field and shear stress, written in terms of generalized R function, are presented the similar characteristics with Newtonian and non-Newtonian fluids. Moreover, the effects of various parameters are systematically analyzed.


2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Muhammad Jamil

AbstractThe flow of an incompressible fractionalized Maxwell fluid induced by an oscillating plate has been studied, where the no-slip assumption between the wall and the fluid is no longer valid. The solutions obtained for the velocity field and the associated shear stress, written in terms of H-functions, using discrete Laplace transform, satisfy all imposed initial and boundary conditions. The no-slip contributions, that appeared in the general solutions, as expected, tend to zero when slip parameter


Open Physics ◽  
2011 ◽  
Vol 9 (3) ◽  
Author(s):  
Constantin Fetecau ◽  
Dumitru Vieru ◽  
Corina Fetecau

AbstractThe velocity field corresponding to the unsteady motion of a viscous fluid between two side walls perpendicular to a plate is determined by means of the Fourier transforms. The motion of the fluid is produced by the plate which after the time t = 0, applies an oscillating shear stress to the fluid. The solutions that have been obtained, presented as a sum of the steady-state and transient solutions satisfy the governing equation and all imposed initial and boundary conditions. In the absence of the side walls they are reduced to the similar solutions corresponding to the motion over an infinite plate. Finally, the influence of the side walls on the fluid motion, the required time to reach the steady-state, as well as the distance between the walls for which the velocity of the fluid in the middle of the channel is unaffected by their presence, are established by means of graphical illustrations.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Muhammad Jamil

The velocity field and the adequate shear stress corresponding to the first problem of Stokes for generalized Burgers’ fluids are determined in simple forms by means of integral transforms. The solutions that have been obtained, presented as a sum of steady and transient solutions, satisfy all imposed initial and boundary conditions. They can be easily reduced to the similar solutions for Burgers, Oldroyd-B, Maxwell, and second-grade and Newtonian fluids. Furthermore, as a check of our calculi, for small values of the corresponding material parameters, their diagrams are almost identical to those corresponding to the known solutions for Newtonian and Oldroyd-B fluids. Finally, the influence of the rheological parameters on the fluid motions, as well as a comparison between models, is graphically illustrated. The non-Newtonian effects disappear in time, and the required time to reach steady-state is the lowest for Newtonian fluids.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
M. Imran ◽  
A. U. Awan ◽  
Mehwish Rana ◽  
M. Athar ◽  
M. Kamran

The velocity field and the adequate shear stress corresponding to the rotational flow of a fractional Maxwell fluid, between two infinite coaxial circular cylinders, are determined by applying the Laplace and finite Hankel transforms. The solutions that have been obtained are presented in terms of generalized Ga,b,c(·,t) and Ra,b(·,t) functions. Moreover, these solutions satisfy both the governing differential equations and all imposed initial and boundary conditions. The corresponding solutions for ordinary Maxwell and Newtonian fluids are obtained as limiting cases of our general solutions. Finally, the influence of the material parameters on the velocity and shear stress of the fluid is analyzed by graphical illustrations.


Sign in / Sign up

Export Citation Format

Share Document