scholarly journals Variation of the Gravitational Constant in the Radiation-Dominated Universe

2012 ◽  
Vol 2012 ◽  
pp. 1-4
Author(s):  
L. L. Williams

The unification of classical electrodynamics and general relativity within the context of five-dimensional general relativity (Kaluza, 1921, and Thiry, 1948) contains a scalar field which may be identified with the gravitational constant, G. The field equations of this theory are solved under conditions of the Robertson-Walker metric for flat space, for a radiation-dominated universe—a model appropriate for the early history of our universe. This leads to a cosmology wherein G is inversely proportional to the Robertson-Walker scale factor. This result is discussed in the context of the Dirac large number hypothesis and in the context of an expression for G in terms of atomic constants.

1974 ◽  
Vol 76 (1) ◽  
pp. 359-367 ◽  
Author(s):  
P. A. Hogan

In this paper we derive the Lorentz-Dirac equation of motion for a charged particle moving in an external electromagnetic field. We use Maxwell's electromagnetic field equations together with the assumptions (1) that all fields are retarded and (2) that the 4-force acting on the charged particle is a Lorentz 4-force. To define the self-field on the world-line of the charge we utilize a contour integral representation for the field due to A. W. Conway. This by-passes the need to define an ‘average field’. In an appendix the case of a scalar field is briefly discussed.


2019 ◽  
Vol 79 (12) ◽  
Author(s):  
Chad Middleton ◽  
Bret A. Brouse ◽  
Scott D. Jackson

AbstractWe examine the time evolution of the $$D=d+4$$D=d+4 dimensional Einstein field equations subjected to a flat Robertson-Walker metric where the 3D and higher-dimensional scale factors are allowed to evolve at different rates. We find the exact solution to these equations for a single fluid component, which yields two limiting regimes offering the 3D scale factor as a function of the time. The fluid regime solution closely mimics that described by 4D FRW cosmology, offering a late-time behavior for the 3D scale factor after becoming valid in the early universe, and can give rise to a late-time accelerated expansion driven by vacuum energy. This is shown to be preceded by an earlier volume regime solution, which offers a very early-time epoch of accelerated expansion for a radiation-dominated universe for $$d=1$$d=1. The time scales describing these phenomena, including the transition from volume to fluid regime, are shown to fall within a small fraction of the first second when the fundamental constants of the theory are aligned with the Planck time. This model potentially offers a higher-dimensional alternative to scalar-field inflationary theory and a consistent cosmological theory, yielding a unified description of early- and late-time accelerated expansions via a 5D spacetime scenario.


2016 ◽  
Vol 31 (10) ◽  
pp. 1650047
Author(s):  
F. Darabi ◽  
A. Parsiya ◽  
K. Atazadeh

We consider the nonminimally kinetic coupled version of DGP brane model, where the kinetic term of the scalar field is coupled to the metric and Einstein tensor on the brane by a coupling constant [Formula: see text]. We obtain the corresponding field equations, using the Friedmann–Robertson–Walker metric and the perfect fluid, and study the inflationary scenario to confront the numerical analysis of six typical scalar field potentials with the current observational results. We find that among the suggested potentials and coupling constants, subject to the e-folding [Formula: see text], the potentials [Formula: see text], [Formula: see text] and [Formula: see text] provide the best fits with both Planck+WP+highL data and Planck+WP+highL+BICEP2 data.


1969 ◽  
Vol 47 (21) ◽  
pp. 2401-2404 ◽  
Author(s):  
S. J. Wilson

An exact solution of the field equations of general relativity is obtained for a static, spherically symmetric distribution of charge and mass which can be matched with the Reissner–Nordström metric at the boundary. The self-energy contributions to the total gravitational mass are computed retaining only the first order terms in the gravitational constant.


2019 ◽  
Vol 16 (02) ◽  
pp. 1950019 ◽  
Author(s):  
Zi-Hua Weng

The paper aims to apply the complex-sedenions to explore the field equations of four fundamental interactions, which are relevant to the classical mechanics and quantum mechanics, in the curved spaces. Maxwell was the first to utilize the quaternions to describe the property of electromagnetic fields. Nowadays, the scholars introduce the complex-octonions to depict the electromagnetic and gravitational fields. And the complex-sedenions can be applied to study the field equations of the four interactions in the classical mechanics and quantum mechanics. Further, it is able to extend the field equations from the flat space into the curved space described with the complex-sedenions, by means of the tangent-frames and tensors. The research states that a few physical quantities will make a contribution to certain spatial parameters of the curved spaces. These spatial parameters may exert an influence on some operators (such as, divergence, gradient, and curl), impacting the field equations in the curved spaces, especially, the field equations of the four quantum-fields in the quantum mechanics. Apparently, the paper and General Relativity both confirm and succeed to the Cartesian academic thought of ‘the space is the extension of substance’.


2000 ◽  
Vol 15 (10) ◽  
pp. 1521-1531 ◽  
Author(s):  
K. GHAFOORI-TABRIZI ◽  
S. S. GOUSHEH ◽  
H. R. SEPANGI

We analyze a classical model of gravitation coupled to a self-interacting scalar field. We show that, within the context of this model for Robertson–Walker cosmologies, there exist solutions in the spatially non-flat cases exhibiting transitions from a Euclidean to a Lorentzian space–time. We then discuss the conditions under which these signature changing solutions to Einstein's field equations exist. In particular, we find that an upper bound for the cosmological constant exists and that close to the signature changing hypersurface, both the scale factor and the scalar field have to be constant. Moreover we find that the signature changing solutions do not exist when the scalar field is massless.


2016 ◽  
Vol 25 (11) ◽  
pp. 1640016 ◽  
Author(s):  
Friedrich W. Hehl ◽  
Yakov Itin ◽  
Yuri N. Obukhov

In 1922, Kottler put forward the program to remove the gravitational potential, the metric of spacetime, from the fundamental equations in physics as far as possible. He successfully applied this idea to Newton’s gravitostatics and to Maxwell’s electrodynamics, where Kottler recast the field equations in premetric form and specified a metric-dependent constitutive law. We will discuss the basics of the premetric approach and some of its beautiful consequences, like the division of universal constants into two classes. We show that classical electrodynamics can be developed without a metric quite straightforwardly: the Maxwell equations, together with a local and linear response law for electromagnetic media, admit a consistent premetric formulation. Kottler’s program succeeds here without provisos. In Kottler’s approach to gravity, making the theory relativistic, two premetric quasi-Maxwellian field equations arise, but their field variables, if interpreted in terms of general relativity, do depend on the metric. However, one can hope to bring the Kottler idea to work by using the teleparallelism equivalent of general relativity, where the gravitational potential, the coframe, can be chosen in a premetric way.


2021 ◽  
Vol 11 (2) ◽  
pp. 163-168
Author(s):  
Sudipto Roy

The present article demonstrates a very simple mathematical way to determine the time-dependence of the dynamical gravitational constant () in the framework of the Brans-Dicke theory of gravity. Brans-Dicke field equations, for a matter-dominated, pressure-less and spatially flat universe with homogeneous and isotropic space-time, have been used for this formulation. The gravitational constant () is the reciprocal of the Brans-Dicke scalar field (). Using a simple ansatz, which represents the Brans-Dicke scalar field () as a function of time, the possible values of a constant parameter (constituting the ansatz) have been calculated with the help of the field equations, using the values of some cosmological parameters at the present time. The values of that parameter (belonging to the ansatz) lead to the conclusion that the scalar field () decreases and consequently the gravitational constant () increases with time. The value of the relative time-rate of change of the gravitational constant (i.e., ) has also been estimated and this quantity has been found to be independent of time. Time-dependence of and has been depicted graphically for all values of the parameter belonging to the ansatz. The novel features of this study are that the gravitational field equations did not have to be solved, unlike other studies, to arrive at the results and the mathematical scheme for calculations is extremely easy in comparison to other recent studies in this regard.


2020 ◽  
Vol 35 (36) ◽  
pp. 2030020
Author(s):  
Chris Vuille

In this paper I introduce tensor multinomials, an algebra that is dense in the space of nonlinear smooth differential operators, and use a subalgebra to create an extension of Einstein’s theory of general relativity. In a mathematical sense this extension falls between Einstein’s original theory of general relativity in four dimensions and the Kaluza–Klein theory in five dimensions. The theory has elements in common with both the original Kaluza–Klein and Brans–Dicke, but emphasizes a new and different underlying mathematical structure. Despite there being only four physical dimensions, the use of tensor multinomials naturally leads to expanded operators that can incorporate other fields. The equivalent Ricci tensor of this geometry is robust and yields vacuum general relativity and electromagnetism, as well as a Klein–Gordon-like quantum scalar field. The formalism permits a time-dependent cosmological function, which is the source for the scalar field. I develop and discuss several candidate Lagrangians. Trial solutions of the most natural field equations include a singularity-free dark energy dust cosmology.


Sign in / Sign up

Export Citation Format

Share Document