Electrical Properties of Sputtered MoS2 Films

1972 ◽  
Vol 50 (21) ◽  
pp. 2724-2726 ◽  
Author(s):  
A. D. Souder ◽  
D. E. Brodie

The X-ray diffraction pattern, the magnitude of the semiconductivity, and the measured electrical activation energy in r.f. sputtered films of MoS2 are found to be similar to the single crystal. The observed negative magnetoresistance is attributed to a bulk property of the films. The lack of contact noise in sputtered films simplifies the study of these materials.

Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


2014 ◽  
Vol 04 (02) ◽  
pp. 1450007 ◽  
Author(s):  
Shivani Suri ◽  
Vishal Singh ◽  
K. K. Bamzai

Neodymium-doped barium phosphate (NdBP) was prepared as single crystal by room temperature solution technique known as gel encapsulation technique. Single crystal X-ray diffraction shows that the crystal belongs to orthorhombic system. The flower type morphology was observed by scanning electron microscope (SEM) and the stoichiometric composition of the prepared crystal was observed by energy dispersive X-ray analysis (EDAX). The presence of functional group and other groups was studied by Fourier transform infrared spectroscopy (FTIR). The electrical properties of these materials like dielectric constant (ε′), dielectric loss (tanδ) and ac conductivity [ln(σac)] was studied at different temperatures ranging from 40°C to 420°C in the frequency range of 5 kHz to 1 MHz. The activation energy values decreases with increase in frequency suggesting that the conduction mechanism is because of hopping of charge carriers.


1990 ◽  
Vol 5 (1) ◽  
pp. 46-52 ◽  
Author(s):  
R. S. Roth ◽  
C. J. Rawn ◽  
L. A. Bendersky

The compound Sr2Bi2CuO6 should nominally be the phase with n = 1 of the high Tc superconducting series Sr2Bi2CanO4+2n. However, the superconducting phase with n = 1 (with no CaO) occurs only with a gross deficiency in SrO content. Instead, at the composition Sr2Bi2CuO6, a different phase is formed with an x-ray diffraction pattern considerably different from that expected for the n −1 member of the series. This phase has been found, by a combination of electron diffraction and single crystal and powder x-ray diffraction, to have a commensurate lattice with monoclinic symmetry, space group C2/m or Cm, a = 24.473 (2), b = 5.4223 (5), c = 21.959 (2)A, and β = 105.40 (1)°. The actual composition of this phase may be deficient in CuO by as much as 1.0 mole %.


1991 ◽  
Vol 220 ◽  
Author(s):  
Yasuaki Hirano ◽  
Taroh Inada

Single crystal β-SiC films have been fabricated on (100)Si substrates through a thermal reaction between the substrate and carbon atoms sublimed from a high purity graphite source. The substrate temperature during the deposition ranged from 600 to 1100°C. The film properties were analyzed by RHEED and x-ray diffraction measurements. RBS measurements and TEM observations have also been made to investigate the film properties. The single crystal β-SiC films grow at and above 1000°C on (100) substrates. The activation energy is found to be around 1.1 eV for the crystallization process.


1996 ◽  
Vol 49 (12) ◽  
pp. 1273 ◽  
Author(s):  
AL Maclean ◽  
GJ Foran ◽  
BJ Kennedy ◽  
P Turner ◽  
TW Hambley

The structure of 5,10,15,20-tetraphenylporphinatonickel(II) ([Ni( tpp )]) has been studied by both X-ray diffraction (powder and single-crystal methods) and EXAFS. The bond lengths obtained from analysis of the EXAFS agree, within standard deviations, with those obtained from the X-ray diffraction studies. The Ni-N bond length of 1.93(1) Ǻ agrees especially well with the value of 1.931(2) Ǻ obtained from the single-crystal analysis. The powder X-ray diffraction pattern, collected by using synchrotron radiation, is presented.


Dichroism has been observed in the infra-red spectrum of a single crystal of ribonuclease. The dichroism suggests that the crystal contains folded polypeptide chains whose direction is mainly along or near that of the c axis, in agreement with conclusions arrived at by Carlisle & Scouloudi from consideration of the X-ray diffraction pattern. A band ascribed to the N—H vibration of the amide groups in the side chains has been found to be dichroic, and this appears to show that the plane of the NH 2 group in the side chain amides is oriented parallel to the b axis of the crystal.


2014 ◽  
Vol 1633 ◽  
pp. 25-33 ◽  
Author(s):  
D. S. L. Pontes ◽  
F. M Pontes ◽  
Marcelo A. Pereira-da-Silva ◽  
O. M. Berengue ◽  
A. J. Chiquito ◽  
...  

ABSTRACTLaNiO3 thin films were deposited on SrLaAlO4 (100) and SrLaAlO4 (001) single crystal substrates by a chemical solution deposition method and heat-treated in oxygen atmosphere at 700°C in tube oven. Structural, morphological, and electrical properties of the LaNiO3 thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and electrical resistivity as temperature function (Hall measurements). The X-ray diffraction data indicated good crystallinity and a structural preferential orientation. The LaNiO3 thin films have a very flat surface and no droplet was found on their surfaces. Samples of LaNiO3 grown onto (100) and (001) oriented SrLaAlO4 single crystal substrates reveled average grain size by AFM approximately 15-30 and 20-35 nm, respectively. Transport characteristics observed were clearly dependent upon the substrate orientation which exhibited a metal-to-insulator transition. The underlying mechanism is a result of competition between the mobility edge and the Fermi energy through the occupation of electron states which in turn is controlled by the disorder level induced by different growth surfaces.


2003 ◽  
Vol 36 (6) ◽  
pp. 1480-1481 ◽  
Author(s):  
Nattamai S. P. Bhuvanesh ◽  
Joseph H. Reibenspies

A novel method for sample mounting to obtain powder diffraction from very small amounts of samples (ranging from micrograms down to a few nanograms), by using a combination of multiwire area detector, three-circle diffractometer, monochromatic CuKα radiation and 10 µm nylon loops, has been developed. This method exploits customary single-crystal approaches to collect the powder diffraction pattern, which overcomes many of the limitations of conventional powder X-ray diffraction.


2014 ◽  
Vol 805 ◽  
pp. 570-575
Author(s):  
Eleomar Lena ◽  
Adriana Scoton Antonio Chinelatto ◽  
Adilson Luiz Chinelatto

The aim of this study was to obtain 4.5%mol Y2O3-doped ZrO2dense with submicrometer grain size and studying the effects of using oxygen flow during calcination in the electrical properties of bodies sintered. The powders were synthesized by the Pechini method. After synthesis, the resins were dried and the calcinations were performed in air and in oxygen flow at 600°C for 2 h. The powders were pressed with 1600 MPa and sintered by Two Step Sintering (TSS) at 1500°C / 5 min and 1200°C, 1300oC, 1400°C, remaining at these temperatures for 2 and 10 hours. The sinterized samples were characterized by X-ray diffraction, apparent density, scanning electron microscopy and impedance spectroscopy. The apparent densities were greater than 94% for all conditions of calcination and sintering. The value of the activation energy was 0.7eV for the grain and 0.9 eV for the grain boundaries.


Sign in / Sign up

Export Citation Format

Share Document