Chiral symmetry-breaking and scaling properties of (2 + 1)-dimensional QED with four-fermion interactions

1993 ◽  
Vol 71 (7-8) ◽  
pp. 398-402
Author(s):  
Sin Kyu Kang ◽  
Jae Kwan Kim

We study the chiral symmetry-breaking (2 + 1)-dimensional quantum electrodynamics with four-fermion interactions. Solving the Dyson–Schwinger equation with a boundary condition identical to an equation of state, we determine the phase diagram of this model and obtain a large anomalous dimension of the operator [Formula: see text]. By substituting a. symmetry-breaking solution in the equation of state, we find the critical exponents and show that they satisfy the hyperscaling laws. Some comments are given on the equation of hierarchy between the chiral symmetry-breaking scale and the fundamental scale in our model.

2014 ◽  
Vol 29 (33) ◽  
pp. 1450159
Author(s):  
Hua Jiang ◽  
Yong-Long Wang ◽  
Wei-Tao Lu ◽  
Chuan-Cong Wang

We determine the critical fermion flavor for dynamical chiral symmetry breaking in three-dimensional quantum electrodynamics using nonlocal gauge (gauge parameter depends on the momentum or coordinate). The coupled Dyson–Schwinger equations of the fermion and gauge boson propagators are considered in the vicinity of the critical point. Illustrated by using the transverse vertex proposed by Bashir et al., we show that: for a variety of the transverse vertex, the critical flavor is still 128/3π2, the same as using the bare vertex.


2007 ◽  
Vol 22 (06) ◽  
pp. 449-456 ◽  
Author(s):  
MIN HE ◽  
HONG-TAO FENG ◽  
WEI-MIN SUN ◽  
HONG-SHI ZONG

We study the dynamical chiral symmetry breaking (DCSB) of three-dimensional quantum electrodynamics (QED3) at finite chemical potential and temperature in the framework of Dyson–Schwinger approach. Based on the rainbow approximation and assumption that the wave-function renormalization factor equals to one, the dynamically generated mass function is derived and then the corresponding phase diagram in the (T, μ) plane is obtained.


2015 ◽  
Vol 30 (34) ◽  
pp. 1550203 ◽  
Author(s):  
Renata Jora

We study the phase diagram of an [Formula: see text] gauge theory in terms of the number of colors [Formula: see text] and flavors [Formula: see text] with emphasis on the confinement and chiral symmetry breaking phases. We argue that as opposed to SUSY QCD there is a small region in the [Formula: see text] plane where the theory has the chiral symmetry broken but it is unconfined. The possibility of a new phase with strong confinement and chiral symmetry breaking is suggested.


Sign in / Sign up

Export Citation Format

Share Document