Laboratory study of soil–nail interaction in loose, completely decomposed granite

2004 ◽  
Vol 41 (2) ◽  
pp. 274-286 ◽  
Author(s):  
S M Junaideen ◽  
L G Tham ◽  
K T Law ◽  
C F Lee ◽  
Z Q Yue

The technique of soil nailing is seldom used in stabilizing loose fill slopes because there is a lack of understanding of the interaction behaviour of nails in loose fills. A large-scale laboratory apparatus has been built to study the soil–nail interaction in loose fill materials. Pullout tests were performed in a displacement-rate-controlled manner on steel bars embedded in loose, completely decomposed granitic soils. The load–displacement curves have distinct peak values followed by a sharp decrease in the pullout force. The test results also show that the normal stress acting on the nail changes because of the volume-change tendency and arching effect of the soil being sheared around the nail. The post-peak decrease in the pullout force is mainly due to the reduction in the normal stress caused by the arching effect of soil around the nail. The conventional method of analysis tends to give a low interface friction angle and high interface adhesion. The correct interface parameters can be determined by taking the changes in the normal stress acting on the nail into account.Key words: arching effect, interface friction angle, laboratory test, loose fill, pullout resistance, soil–nail interaction.

2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Jukun Guo ◽  
Xiaowei Wang ◽  
Shengyou Lei ◽  
Rui Wang ◽  
Hailei Kou ◽  
...  

Surface groove morphology of structure and particle distribution of soil had a significant effect on the surface friction of structure. In order to investigate the interface shear stress-shear displacement curves, interface model and interface shear strength index when normal stress, groove width, and groove angle change, the interface shear tests of standard sand with steel plates are performed using an improved direct shear apparatus. Test results indicate that the peak shear stress increases with normal stress and the intersection angle between groove direction and shear direction. When the angle increases by 45°, the peak shear stress increases range from 4% to 13%. The peak shear stress increases with groove width, for every 1 mm increase in groove width, and the increasing extent of peak shear stress ranges from 4% to 22%, 3% to 13%, and 1% to 6%, respectively. When the groove angle is 45° and 90°, the increasing extent of peak shear stress decreases with groove width, but when the groove angle is 0°, the decrease regularity of peak shear stress increasing extent is not obvious. The hyperbolic model and Gompertz-C model are used to study the shear stress-shear displacement curves of sand-steel interface. The ratio of the interface peak shear stress of the hyperbolic model and Gompertz-C model to that of the shear test ranges from 0.90 to 1.03 and 0.88 to 0.98, respectively. The interface friction angle at the sand-steel interface ranges from 22° to 29°, and the friction angle of the rough interface is larger than that of the smooth interface. The interface friction angle increases with the intersection angle between the groove direction and the shear direction, the largest at 90°, the second at 45°, and the smallest at 0°. Under the same groove angle, the interface friction angle increases with the groove width, for every 1 mm increase in groove width, and the increasing extent of interface friction angle ranges from 4% to 15%, 4% to 7%, and 2% to 3%, respectively. The increasing extent of interface friction angle decreases with groove width, and this change rule is more obvious at the groove angle of 45° and 90° than at 0°.


Author(s):  
Ibrahim Awad ◽  
Leila Ladani

Due to their superior mechanical and electrical properties, multiwalled carbon nanotubes (MWCNTs) have the potential to be used in many nano-/micro-electronic applications, e.g., through silicon vias (TSVs), interconnects, transistors, etc. In particular, use of MWCNT bundles inside annular cylinders of copper (Cu) as TSV is proposed in this study. However, the significant difference in scale makes it difficult to evaluate the interfacial mechanical integrity. Cohesive zone models (CZM) are typically used at large scale to determine the mechanical adherence at the interface. However, at molecular level, no routine technique is available. Molecular dynamic (MD) simulations is used to determine the stresses that are required to separate MWCNTs from a copper slab and generate normal stress–displacement curves for CZM. Only van der Waals (vdW) interaction is considered for MWCNT/Cu interface. A displacement controlled loading was applied in a direction perpendicular to MWCNT's axis in different cases with different number of walls and at different temperatures and CZM is obtained for each case. Furthermore, their effect on the CZM key parameters (normal cohesive strength (σmax) and the corresponding displacement (δn) has been studied. By increasing the number of the walls of the MWCNT, σmax was found to nonlinearly decrease. Displacement at maximum stress, δn, showed a nonlinear decrease as well with increasing the number of walls. Temperature effect on the stress–displacement curves was studied. When temperature was increased beyond 1 K, no relationship was found between the maximum normal stress and temperature. Likewise, the displacement at maximum load did not show any dependency to temperature.


2020 ◽  
Vol 857 ◽  
pp. 203-211
Author(s):  
Majid Hamed ◽  
Waleed S. Sidik ◽  
Hanifi Canakci ◽  
Fatih Celik ◽  
Romel N. Georgees

This study was undertaken to investigate some specific problems that limit a safe design and construction of structures on problematic soils. An experimental study was carried out to examine the influence of loading rate and moisture content on shear strength of organic soil. Influece of moisture content on interface friction between organic soil and structural materials was also attempted. A commonly used soil in Iraq was prepared at varying moisture contents of 39%, 57% and 75%. The experimental results showed that the increase in water content will decrease the shear stress and the internal friction angle. An increase of the shearing rate was found to decrease the shear stress and internal friction angle for all percetanges of water contents. Further, direct shear tests were carried out to detect the interface shear stress behavior between organic soil and structural materials. The results revealed that the increase in water content was shown to have significant negetavie effects on the interface internal friction and angle shear strength.


2013 ◽  
Vol 50 (12) ◽  
pp. 1236-1249 ◽  
Author(s):  
C.Y. Cheuk ◽  
K.K.S. Ho ◽  
A.Y.T. Lam

Soil nailing has been used to upgrade substandard loose fill slopes in Hong Kong. Due to the possibility of static liquefaction failure, a typical design arrangement comprises a structural slope facing anchored by a grid of soil nails bonded into the in situ ground. Numerical analyses have been conducted to examine the influence of soil nail orientations on the behaviour of the ground nail–facing system. The results suggest that the use of steeply inclined nails throughout the entire slope could avoid global instability, but could lead to significant slope movement especially when sliding failure prevails, for instance, due to interface liquefaction. The numerical analyses also demonstrate that if only subhorizontal nails are used, the earth pressure exerted on the slope facing may cause uplift failure of the slope cover. To overcome the shortcomings of using soil nails at a single orientation, a hybrid nail arrangement comprising nails at two different orientations is proposed. The numerical analyses illustrate that the hybrid nail arrangement would limit slope movement and enhance the robustness of the system.


2008 ◽  
Vol 68 (4) ◽  
pp. 875-883 ◽  
Author(s):  
LH. Sipaúba-Tavares ◽  
AML. Pereira

Large-scale lab culture of Ankistrodesmus gracilis and Diaphanososma birgei were evaluated by studying the biology and biochemical composition of the species and production costs. Ankistrodesmus gracilis presented exponential growth until the 6th day, with approximately 144 x 10(4) cells.mL-1, followed by a sharp decrease to 90 x 10(4) cells.mL-1 (8th day). Algae cells tended to increase again from the 11th day and reached a maximum of 135 x 10(4) cells.mL-1 on the 17th day. D. birgei culture showed exponential growth until the 9th day with 140 x 10² individuals.L-1, and increased again as from the 12th day. Algae A. gracilis and zooplankton D. birgei contain 47 to 70% dry weight protein and over 5% dry weight carbohydrates. The most expensive items in the context of variable costs were labor and electricity. Data suggested that temperature, nutrients, light availability and culture management were determining factors on productivity. Results indicate that NPK (20-5-20) may be used directly as a good alternative for mass cultivation when low costs are taken into account, promoting adequate growth and nutritional value for cultured A. gracilis and D. birgei.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
E. P. Petrov

A frequency-domain method has been developed to predict and comprehensively analyze the limit-cycle flutter-induced vibrations in bladed disks and other structures with nonlinear contact interfaces. The method allows, for the first time, direct calculation of the limit-cycle amplitudes and frequencies as functions of contact interface parameters and aerodynamic characteristics using realistic large-scale finite element models of structures. The effects of the parameters of nonlinear contact interfaces on limit-cycle amplitudes and frequencies have been explored for major types of nonlinearities occurring in gas-turbine structures. New mechanisms of limiting the flutter-induced vibrations have been revealed and explained.


2010 ◽  
Vol 47 (6) ◽  
pp. 635-647 ◽  
Author(s):  
Cristina de Hollanda Cavalcanti Tsuha ◽  
Nelson Aoki

The empirical torque correlation factor (KT), which relates the uplift capacity to the installation torque of helical piles, is routinely used as an on-site instrument for quality control with this type of foundation. This paper presents a theoretical relationship between uplift capacity and installation torque of deep helical piles in sand. An experimental program, including centrifuge and direct shear interface tests, was carried out to validate this expression. The experimental results were compared with the values predicted by the suggested approach and showed good agreement. As the developed model depends on the residual interface friction angle (δr) between the helix surface and the surrounding sand, results of δr, extracted from different sand samples, are presented for use in this suggested relationship on site. Also, the values of KT found in this work were compared with those of field and laboratory tests on helical piles in sand reported in the literature. From this analysis, it was found that the measured values of KT decrease with an increase in pile dimensions and, in most of cases, with an increase in sand friction angle. These results were explained by the presented model.


2018 ◽  
Vol 59 (77) ◽  
pp. 50-58 ◽  
Author(s):  
Yukari Takeuchi ◽  
Koichi Nishimura ◽  
Abani Patra

ABSTRACTAlthough the disaster reduction effects of forest braking have long been known empirically, they have not been known in detail down to recent. In this study, we ascertained forest braking effect by numerical simulations using the avalanche dynamics program, TITAN2D, to model large-scale avalanches. One of these avalanches occurred in the Makunosawa valley, Myoko, and damaged a cedar forest; the others occurred on Mt. Iwate and damaged a subalpine forest. All avalanches damaged many trees and terminated within the forests. In our simulations, the resistance of the forests to avalanches is simulated using a larger bed friction angle. Fitting the observations from the Makunosawa avalanche by trial and error, a bed friction angle of 13–14° in the non-forested area and of 25° in the forested area is obtained. We conducted simulations of the Mt. Iwate avalanches using the same method as for the Makunosawa valley avalanche, and obtained good agreement between observations and simulations. Simulations reveal that without the forest, the avalanche would have traveled at least 200 m farther than the forest's actual end in the Makunosawa valley, and at least 200 m and possibly up to 600 m farther on Mt. Iwate. This study therefore clearly shows that forests provide a braking effect for avalanches.


Sign in / Sign up

Export Citation Format

Share Document