Variation of tow force with velocity during offshore ploughing in granular materials

2012 ◽  
Vol 49 (11) ◽  
pp. 1244-1255 ◽  
Author(s):  
Keith Duncan Lauder ◽  
Michael John Brown ◽  
Mark Fraser Bransby ◽  
Scott Gooding

Pipeline plough behaviour has been investigated by means of reduced scale physical model testing. A testing programme was devised to investigate the influence of permeability, relative density, and plough depth on the associated tow force measured during ploughing over a range of velocities in saturated granular material. An increase in tow force with velocity was found during all of the tests and the results have been compared to previously developed analytical models. A new empirical equation has been developed to describe the change in tow force with velocity for a variety of model siliceous sand conditions. Application of this new approach to full-scale ploughing requires consideration of scaling effects and the use of appropriate input parameters determined to replicate field conditions.

2002 ◽  
Vol 457 ◽  
pp. 377-409 ◽  
Author(s):  
L. SRINIVASA MOHAN ◽  
K. KESAVA RAO ◽  
PRABHU R. NOTT

A rigid-plastic Cosserat model for slow frictional flow of granular materials, proposed by us in an earlier paper, has been used to analyse plane and cylindrical Couette flow. In this model, the hydrodynamic fields of a classical continuum are supplemented by the couple stress and the intrinsic angular velocity fields. The balance of angular momentum, which is satisfied implicitly in a classical continuum, must be enforced in a Cosserat continuum. As a result, the stress tensor could be asymmetric, and the angular velocity of a material point may differ from half the local vorticity. An important consequence of treating the granular medium as a Cosserat continuum is that it incorporates a material length scale in the model, which is absent in frictional models based on a classical continuum. Further, the Cosserat model allows determination of the velocity fields uniquely in viscometric flows, in contrast to classical frictional models. Experiments on viscometric flows of dense, slowly deforming granular materials indicate that shear is confined to a narrow region, usually a few grain diameters thick, while the remaining material is largely undeformed. This feature is captured by the present model, and the velocity profile predicted for cylindrical Couette flow is in good agreement with reported data. When the walls of the Couette cell are smoother than the granular material, the model predicts that the shear layer thickness is independent of the Couette gap H when the latter is large compared to the grain diameter dp. When the walls are of the same roughness as the granular material, the model predicts that the shear layer thickness varies as (H/dp)1/3 (in the limit H/dp [Gt ] 1) for plane shear under gravity and cylindrical Couette flow.


2014 ◽  
Vol 670-671 ◽  
pp. 1041-1044 ◽  
Author(s):  
Xi Wang Wang ◽  
Xiao Yang Li ◽  
Lin Lin Zhang ◽  
Xiao Guang Wang

Joint member stiffness in a bolted connection directly influence the safety of a design in regard to both static and fatigue loading as well as in the prevention of separation in the connection. Thus, the accurate determination of the stiffness is of extreme importance to predict the behavior of bolted assemblies. In this paper, An analytical 3D axisymmetric model of bolted joints is proposed to obtain the joint stiffness of Bolted Joints. Considering many different analytical models have been proposed to calculate the joint stiffness, the expression based force equilibrium can be a easy way to choose the best expression for the joint stiffness as a judgment criteria.


Author(s):  
Halvor Lie ◽  
Henning Braaten ◽  
Jamison Szwalek ◽  
Massimiliano Russo ◽  
Rolf Baarholm

For deep-water riser systems, Vortex Induced Vibrations (VIV) may cause significant fatigue damage. It appears that the knowledge gap of this phenomenon is considerable and this has caused a high level of research activity over the last decades. Small scale model tests are often used to investigate VIV behaviour. However, one substantial uncertainty in applying such results is scaling effects, i.e. differences in VIV response in full scale flow and small scale flow. To (partly) overcome this obstacle, a new innovative VIV test rig was designed and built at MARINTEK to test a rigid full scale riser model. The rigid riser model is mounted vertically and can either be elastically mounted or be given a forced motion. In the present version, the cylinder can only move in the cross-flow (CF) direction and is restricted in the in-line (IL) direction. The paper reports results from a drilling riser VIV experiment where the new rest rig has been used. The overall objective of the work is to study possible VIV suppression to improve operability of retrievable riser systems with auxiliary lines by adding riser fins. These fins are normally used as devices for protection of the auxiliary lines. The test program has recently been completed and analysis is an on-going activity. However, some results can be reported at this stage and more results are planned to be published. A bare riser model was used in a Reynolds number (Rn) scaling effect study. The riser model was elastically mounted and towed over a reduced velocity range around 4 – 10 in two different Rn ranges, 75 000 – 192 000 (subcritical regime) and 347 000 – 553 000 (critical regime). The difference in the displacement amplitude to diameter ratio, A/D, is found to be significant. The elastically mounted riser was also towed with various drilling riser configurations in order to study VIV/galloping responses. One configuration included a slick joint riser model with 6 kill & choke lines; another has added riser fins too. The riser model is based on a specific drilling riser and the kill and choke lines have various diameters and have a non-symmetrical layout. The various riser configurations have also been used in forced motion tests where the towed model has been given a sinusoidal CF motion. Forces have been measured. Determination of the force coefficients is still in progress and is planned to be reported later. Scaling effects appear to be a significant uncertainty and further research on the subject is recommended. The slick joint drilling riser configuration generally increased the displacements compared to displacements of the bare riser model. The drilling riser configuration with protection fins, kill and choke lines generally reduced the displacements compared to displacements of the bare riser model. For both riser systems, tests showed that the response is sensitive to the heading of the current.


2004 ◽  
Vol 21 (Supplement 32) ◽  
pp. 207
Author(s):  
G. H. Breuer ◽  
R. Riss ◽  
M. Cobas-Meyer ◽  
F. Bremer ◽  
M. Grapengeter ◽  
...  

2020 ◽  
pp. 38-60
Author(s):  
Lin Li ◽  
Farshad Amini ◽  
Yi Pan ◽  
Saiyu Yuan ◽  
Bora Cetin

1978 ◽  
Vol 1 (16) ◽  
pp. 38
Author(s):  
Sverre Bjordal ◽  
Alf Torum

A common method of estimating the sheltering effects of different breakwater locations and layouts is to carry out physical model wave disturbance tests. Such tests have been carried out in different laboratories throughout the world for many years. But to our knowledge no reports are available in the literature showing comparison between model measurements and field measurements. The trend is that we know more and more on the wave cl imate along our coasts. Hence we have a better basis to make our economical calculations on breakwaters. We therefore also want to operate our models on a more absolute basis rather than on a comparative basis. The trend in recent years has also been to study breakwater locations and layouts in order to minimize mooring forces and ship movements. On this background VHL found a comparison between model test results and field measurements necessary. Full scale measurements of waves were carried out in two harbours by VHL during the winter 1976/77. This paper will present the results of the comparison of the model and the full scale measurements in Berlevag and Vard0 fishing harbours on the open coast of Finnmark in the northern part of Norway (Fig. I) . The model tests, as well as the full scale measurements, have been sponsored by the Norwegian State Harbour Authorities.


Author(s):  
Mikhail Vasilevich Lyakhovets ◽  
Georgiy Valentinovich Makarov ◽  
Alexandr Sergeevich Salamatin

The article is devoted to questions of synthesis of full-scale - model realizations of data series on the basis of natural data for modeling of controllable and uncontrollable influences at research of operating and projected control systems, and also in training systems of computer training. The possibility of formation of model effects on the basis of joint use of multivariate dynamic databases and natural data simulator is shown. Dynamic databases store information that characterizes the typical representative situations of systems in the form of special functions - generating functions. Multiple variability of dynamic databases is determined by the type of the selected generating function, the methods of obtaining parameters (coefficients) of this function, as well as the selected accuracy of approximation. The situation models recovered by generating functions are used as basic components (trends) in the formation of the resulting full-scale - model implementations and are input into the natural data simulator. The data simulator allows for each variant of initial natural data to form an implementation of the perturbation signal with given statistical properties on a given simulation interval limited by the initial natural implementation. This is achieved with the help of a two-circuit structure, where the first circuit is responsible for evaluation and cor-rection of initial properties of the natural signal, and the second - for iterative correction of deviations of properties of the final implementation from the specified ones. The resulting realizations reflect the properties of their full-scale components, which are difficult to describe by analytical models, and are supplemented by model values, allowing in increments to correct the properties to the specified ones. The given approach allows to form set of variants of course of processes on the basis of one situation with different set degree of uncertainty and conditions of functioning.


2021 ◽  
Vol 20 (2) ◽  
pp. 332-345
Author(s):  
Gökhan Altay ◽  
◽  
Cafer Kayadelen ◽  
Taha Taskiran ◽  
Baki Bagriacik ◽  
...  

The parameters concerning the interaction between geocell and granular materials is required for the design of many geotechnical structures. With this in mind, a series of experiments using simple direct shear tests are conducted in order to understand the frictional properties between geocells filled with granular materials. The 54 test samples are prepared by filling the geocell with granular materials having three different gradations. These samples are tested at three different relative densities under three different normal stress levels. As a result, it was observed that interface resistance between the geocells filled with granular material is found to be generally greater than in the samples without geocells. Additionally, these samples with geocells are found to be stiffer; this is due to the fact that the samples with geocell gained more cohesion because geocells confined the grains within a restricted volume.


Author(s):  
Mian M. Ajmal ◽  
Yohanes Kristianto

This paper examines knowledge sharing in supply chain by developing analytical models to minimize knowledge sharing uncertainty. Analogies from thermodynamics are used to describe the phenomenon in supply chain knowledge sharing. The study finds that distance and sender capacity are important to reduce knowledge sharing uncertainty. Furthermore, higher contact frequency between the sender and the receiver without considering sender capacity is proven to be insignificant to reduce uncertainty. This mechanism provides a new approach to explicate knowledge sharing in supply networks. It also serves as a deep-rooted opening point for supplementary empirical assessment. The mechanism facilitates managers to expand their understanding of composite circumstances embedded into global supply networks to share their knowledge. With enhanced understanding, managers can spotlight their actions, increasing their firms’ competitiveness. This study provides a deeper theoretical understanding of knowledge sharing in supply networks with a practical approach.


Sign in / Sign up

Export Citation Format

Share Document