Behavior of Circular Footings and Plate Anchors Embedded in Permafrost

1974 ◽  
Vol 11 (4) ◽  
pp. 531-553 ◽  
Author(s):  
B. Ladanyi ◽  
G. H. Johnston

The purpose of this paper is to develop a method for predicting the creep settlement and the bearing capacity of frozen soils under deep circular loads. The theory uses experimentally determined creep parameters of frozen soil and is intended to be applicable to the design of deep circular footings and screw anchors embedded in permafrost soils. On the basis of available experimental evidence, it was concluded that a mathematical model different from that usual in soil mechanics should be used in solving the time-dependent bearing capacity problem of such footings. The solution proposed in the paper was obtained by using the mathematical model of an expanding spherical cavity in a nonlinear viscoelastic-plastic medium with time, temperature, and normal pressure dependent strength properties. For a given footing or anchor, the theory furnishes either isochronous load-displacement curves, or load-creep rate curves, or a time-dependent bearing capacity for which formulas and graphs of nonlinear elastic-plastic bearing capacity factors are supplied.The theoretical predictability of creep rates and ultimate failure loads was checked against the results of screw anchor tests carried out by the Division of Building Research, N.R.C.C., at a permafrost site in Thompson, Manitoba. It was found that the use in the theory of the creep parameters determined by creep-pressuremeter tests performed at the site, resulted in a satisfactory agreement between the predicted and the observed behavior.

1975 ◽  
Vol 12 (3) ◽  
pp. 393-407 ◽  
Author(s):  
B. Ladanyi

The first part of this paper discusses some basic requirements for the determination of the allowable bearing pressure for frozen soils, with a particular reference to the delayed deformations due to creep and consolidation, which occur simultaneously in frozen soils containing large amounts of unfrozen water.In the second part of the paper, it is shown how the creep settlement and failure of a strip footing in frozen soil can be predicted by using a simple mathematical model of an expanding cylindrical cavity. With the help of a previously obtained solution, valid for a circular footing, and an appropriate empirical depth factor, the present solution is then extended to cover also the bearing capacity of footings of any shape and at any depth of embedment.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mykhaylo Tkach ◽  
Serhii Morhun ◽  
Yuri Zolotoy ◽  
Irina Zhuk

AbstractNatural frequencies and vibration modes of axial compressor blades are investigated. A refined mathematical model based on the usage of an eight-nodal curvilinear isoparametric finite element was applied. The verification of the model is carried out by finding the frequencies and vibration modes of a smooth cylindrical shell and comparing them with experimental data. A high-precision experimental setup based on an advanced method of time-dependent electronic interferometry was developed for this aim. Thus, the objective of the study is to verify the adequacy of the refined mathematical model by means of the advanced time-dependent electronic interferometry experimental method. The divergence of the results of frequency measurements between numerical calculations and experimental data does not exceed 5 % that indicates the adequacy and high reliability of the developed mathematical model. The developed mathematical model and experimental setup can be used later in the study of blades with more complex geometric and strength characteristics or in cases when the real boundary conditions or mechanical characteristics of material are uncertain.


1991 ◽  
Vol 113 (1) ◽  
pp. 27-29 ◽  
Author(s):  
E. Belardinelli ◽  
M. Ursino ◽  
G. Fabbri ◽  
A. Cevese ◽  
F. Schena

In the present paper pressure changes induced by sudden body acceleration are studied “in vivo” on the dog and compared to the results obtainable with a recently developed mathematical model. A dog was fixed to a movable table, which was accelerated by a compressed air piston for less than 1 s. Acceleration was varied by changing the air pressure in the piston. Pressure was measured during the experiment at different points along the vascular bed. However, only data obtained in the carotid artery and abdominal aorta are presented here. The results demonstrated that impulse body accelerations cause significant pressure peaks in the vessel examined (about + 25 mmHg in the carotid artery with body acceleration of g/2). Moreover, pressure changes are rapidly damped, with a time constant of about 0.1s. From the present results it may be concluded that, according to the prediction of the mathematical model, body accelerations such as those occurring in normal life can induce pressure changes well beyond the normal pressure value.


2019 ◽  
Vol 23 (3) ◽  
pp. 1611-1631 ◽  
Author(s):  
Ilari Lehtonen ◽  
Ari Venäläinen ◽  
Matti Kämäräinen ◽  
Antti Asikainen ◽  
Juha Laitila ◽  
...  

Abstract. Trafficability in forest terrain is controlled by ground-bearing capacity, which is crucial from the timber harvesting point of view. In winter, soil frost affects the most the bearing capacity, especially on peatland soils which have in general low bearing capacity. Ground frost similarly affects the bearing capacity of forest truck roads. A 20 cm thick layer of frozen soil or 40 cm thick layer of snow on the ground may already be sufficient for heavy forest harvesters. In this work, we studied the impacts of climate change on soil frost conditions and, consequently, on ground-bearing capacity from the timber harvesting point of view. The number of days with good wintertime bearing capacity was modelled by using a soil temperature model with a snow accumulation model and wide set of downscaled climate model data until the end of the 21st century. The model was calibrated for different forest and soil types. The results show that by the mid-21st century, the conditions with good bearing capacity will decrease in wintertime in Finland, most likely by about 1 month. The decrease in soil frost and wintertime bearing capacity will be more pronounced during the latter half of the century, when drained peatlands may virtually lack soil frost in most of winters in southern and western Finland. The projected decrease in the bearing capacity, accompanied with increasing demand for wood harvesting from drained peatlands, induces a clear need for the development of sustainable and resource-efficient logging practices for drained peatlands. This is also needed to avoid unnecessary harvesting damages, like rut formation on soils and damage to tree roots and stems.


1984 ◽  
Vol 15 (4-5) ◽  
pp. 243-252 ◽  
Author(s):  
Helén Engelmark

A one-dimensional mathematical model is used to simulate the process of snow-melt infiltration in unsaturated frozen silt. Hydraulic and thermal parameters are mainly based on data given in the literature. Field observations in a watershed (of area 1.8 km2) are compared with simulated data and consequences on snow melt run-off are discussed.


Author(s):  
A. N. Nikolyukin ◽  
◽  
V. P. Yartsev ◽  
S. A. Mamontov ◽  
I. I. Kolomnikova ◽  
...  

Disruption of the adhesion of reinforcement to concrete causes significant deformation of the structure, which can subsequently lead to the loss of its bearing capacity. There is a need to study the bonding process between concrete and reinforcement under various influences. The results of a numerical experiment on pulling out reinforcement of periodic profile from concrete are presented. A mathematical model to study the processes taking place in the field of embedding reinforcement in concrete has been built. The results of numerical modeling are described.


Vestnik MGSU ◽  
2021 ◽  
pp. 463-472
Author(s):  
Zaven G. Ter-Martirosyan ◽  
Armen Z. Ter-Martirosyan ◽  
Ahmad Othman

Introduction. In case of brief exposure to static loads or dynamic loads, in conditions of absence of drainage, distribution of total stresses between the skeleton of soil and pore gas-containing water should be taken in account. The situation of the stress-strain state of the base is further complicated when we consider the degree of water-saturation of soil of the foundation (0.8 < Sr ≤ 1). The aim of the study is to pose and solve problem of the stress-strain state of a water-saturated soil massif, Including settlement and bearing capacity of a water-saturated base of a foundation of finite width, depending on the degree of water saturation of soils, taking into account the linear and nonlinear properties of the skeleton of soil and the compressibility of pore gas-containing water. Materials and methods. Henckyʼs system of physical equations are used as a calculation model to describe the relationship between deformation and stresses of soil, which takes into account the influence of the average stress on the deformation and strength properties of the soil. This system allows us to represent the linear deformation of the soil as the sum of the volumetric and shear components of the soil of this deformation. In addition allows us too to determine the deformation of the layer of soil, as part of the compressible thickness of the base of foundation with finite width under conditions of free deformations. Results. Depending on the linear and nonlinear deformation parameters, the settlement can be developed with a damped curve (S – p) and stabilize, and can be developed with a non-damped curve (S – p) and moved to the stage of progressive settlement. Conclusions. Solutions have been made for cases when the water-saturation of the base soils changes in the range of 0.8 to 1.0. It is shown that the settlement and bearing capacity of a water-saturated base significantly depends on the degree of water saturation of soils.


Author(s):  
Xiongfei Lv ◽  
Liwu Liu ◽  
Jinsong Leng ◽  
Yanju Liu ◽  
Shengqiang Cai

When a dielectric elastomer (DE) balloon is subjected to electromechanical loading, instability may happen. In recent experiments, it has been shown that the instability configuration of a DE balloon under electromechanical loading can be very different from that only subjected to mechanical load. It has also been observed in the experiments that the electromechanical instability phenomena of a DE balloon can be highly time-dependent. In this article, we adopt a nonlinear viscoelastic model for the DE membrane to investigate the time-dependent electromechanical instability of a DE balloon. Using the model, we show that under a constant electromechanical loading, a DE balloon may gradually evolve from a convex shape to a non-convex shape with bulging out in the centre, and compressive hoop stress can also gradually develop the balloon, resulting in wrinkles as observed in the experiments. We have further shown that the snap-through instability phenomenon of the DE balloon also greatly depends on the ramping rate of the applied voltage.


Sign in / Sign up

Export Citation Format

Share Document