Influence of cyclic load input on the mechanical properties of a sensitive soil from Orleans, Ontario

1980 ◽  
Vol 17 (4) ◽  
pp. 498-508 ◽  
Author(s):  
R. N. Yong ◽  
D. Taplin ◽  
G. Wiseman

The importance of disturbance and remoulding to the alteration of mechanical properties of sensitive soils has been well documented in the geotechnical literature both in terms of laboratory and field behaviours. Man-made transient dynamic input such as dynamite blasting, heavy vehicles, and train movement have been suspected of being capable of causing a reduction in the in situ strength parameters of sensitive clays. A laboratory test program was undertaken to determine whether dynamic loading at peak stress levels below normal failure strength caused similar changes in the mechanical properties, and specifically to quantify the phenomena.In order to simulate highly overconsolidated conditions most of the tests were carried out under conditions of no confining pressure, although supplemental data were obtained from consolidated undrained tests. Some of the variables examined in this program were confining pressure, mean deviatoric stress, cyclic deviatoric stress, cyclic strain, number of applications, frequency, and reference strength. In order to compare the effect of dynamic input with the long-term creep phenomena, a simultaneous constant load program was undertaken.In general terms, the study indicates that under the prestated laboratory test conditions no major reduction in peak strength was found under dynamic loading, and that failure would occur at comparative stress levels under dead-load conditions, but required a greater time. In addition, examination of the sample after failure revealed that any remoulding of the sample appeared to be restricted to the area adjacent to the shear zone.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Guoliang Yang ◽  
Jingjiu Bi ◽  
Xuguang Li ◽  
Jie Liu ◽  
Yanjie Feng

Shale gas is the most important new energy source in the field of energy, and its exploitation is very important. The research on the dynamic mechanical properties of shale is the premise of exploitation. To study the dynamic mechanical properties of shale from the Changning-Weiyuan area of Sichuan Province, China, under confining pressure, we used a split Hopkinson pressure bar (SHPB) test system with an active containment device to carry out dynamic compression tests on shale with different bedding angles. (1) With active confining pressure, the shale experiences a high strain rate, and its stress-strain curve exhibits obvious plastic deformation. (2) For the same impact pressure, the peak stress of shale describes a U-shaped curve with an increasing bedding angle; besides, the peak stress of shale with different bedding angles increases linearly with rising confining pressure. The strain rate shows a significant confining pressure enhancement effect. With active confining pressure, the peak strain gradually decreases as the bedding angle increases. (3) As a result of the influence of different bedding angles, the dynamic elastic modulus of shale has obvious anisotropic characteristics. Shale with different bedding angles exhibits different rates of increase in the dynamic elastic modulus with rising confining pressure, which may be related to differences in the development of planes of weakness in the shale. The results of this study improve our understanding of the behavior of bedded shale under stress.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Haotian Zhang ◽  
Zongmu Luo ◽  
Yanyu Qiu ◽  
Huachao Liu ◽  
Juan Gu ◽  
...  

The prominent performance of wave elimination and energy absorption makes calcareous sand important and useful in infrastructure construction and protection engineering. Due to the high compressibility induced by remarkable intragranular void and irregular shape, calcareous sand presents different mechanical behaviors from common terrestrial sands. Considerable efforts have been made to explore the static and dynamic mechanical properties of calcareous sand. In this paper, a series of monotonous experiments have been performed on calcareous sand utilizing the electrohydraulic servo-controlled test apparatus designed by the Global Digital Systems Ltd (GDS). The effects of confining pressure and relative density on the mechanical properties of dry, drained, and undrained saturated sand were studied, and the underlying micromechanism of deformation and failure was discussed. It can be found that the residual stress of dry calcareous sand is independent of the relative density, while the peak stress and residual stress of drainage saturated sand have a positive correlation with the relative density. The increase of confining pressure makes the strain softening more remarkable and heightens the peak stress and residual stress. The stress-strain curve of calcareous sand can be divided into two portions: prepeak portion and postpeak softening portion. For the dry sand and drainage saturated sand, the softened part can be partitioned into three phases, i.e., accelerated phase, steady phase, and degradation phase, while the undrained saturated sand tends to hyperbolic softening. A mathematical model composed of a hyperbolic function and an inverted S-shaped function was formulated to describe the multiphase characteristic, in which the setting of parameter p expands its applicability. The experimental result validated the model, showing that the model can better describe the monotonic stress-strain relationship of calcareous sand. Besides, the physical meanings of model parameters were discussed.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1830 ◽  
Author(s):  
Hongbo Li ◽  
Jianguang Yin ◽  
Pengfei Yan ◽  
Hao Sun ◽  
Qingqing Wan

To explore the influence of fly ash (FA) and silica fume (SF) on the mechanical properties of self-compacting concrete (SCC) under uniaxial and triaxial, the compressive strength test, splitting strength test, ultrasonic testing test, and triaxial test were performed in this paper. The results show that the 3 days compressive strength and splitting strength of SCC decreased with the increase of FA substitution rate. The 28 days, 56 days, and 91 days compressive strength and splitting strength of SCC increased first and then decreased with the increase of FA substitution rate. The peak stress and peak strain of SCC gradually increased with the increase of confining pressure. The peak stress and strain of SCC increased first and then decreased with the increase of FA substitution rate. Moreover, the relationship models between compressive strength and splitting strength, between compressive strength and amplitude, between peak stress, peak strain and confining pressure under different FA substitution rates were proposed. As a conclusion, the addition of SF can increase the strength of SCC obviously. Under uniaxial stress, SCC failure mode is splitting failure, under triaxial stress, SCC failure mode is shear failure. Based on the Mohr-Coulomb strength theory, the failure criterion of SCC with FA and SF was discussed.


2020 ◽  
Vol 10 (21) ◽  
pp. 7684
Author(s):  
Wenbiao Liang ◽  
Junhai Zhao ◽  
Yan Li ◽  
Yue Zhai ◽  
Zhou Wang ◽  
...  

The dynamic mechanical properties of basalt fiber reinforced concrete (BFRC) with different fiber contents (0.0%, 0.1%, 0.2%, 0.3%, 0.4%), confining pressures (0 MPa, 5 MPa, 10 MPa, 15 MPa) and exposed to different temperatures (20 °C, 200 °C, 400 °C, 600 °C, 800 °C) were investigated by using a 50 mm split Hopkinson pressure bar (SHPB) apparatus, and the factors such as fiber content, temperature and confining pressure effect on the dynamic mechanical properties were analyzed. The results show that the dynamic peak stress increases first and then decreases with the increase of fiber content. At different temperatures, the peak stress and its corresponding strain correspond to different fiber content, and the optimal fiber content is between 0.1% and 0.3%. When the temperature was from 20 °C to 400 °C, the dynamic peak stress decreased less, while when the temperature reached 600 °C and 800 °C, the dynamic peak stress decreased greatly. The confining pressure can significantly increase the dynamic peak stress and change the crushing morphology of specimens. The damage variable was built based on the Weibull distribution. A dynamic damage constitutive model combining statistical damage and viscoelastic model was established based on component combination model. The fitting curve of this model fitted well with test curve by identifying fewer undetermined parameters compared with Zhu-Wang-Tang (ZWT) model; therefore, this model can well describe the dynamic properties of BFRC under impact load.


2022 ◽  
Vol 9 ◽  
Author(s):  
Bo Ma ◽  
Feng Wang ◽  
Hongyang Liu ◽  
Dawei Yin ◽  
Zhiguo Xia

A comprehensive understanding of the mechanical properties of coal and rock sections is necessary for interpreting the deformation and failure modes of such underground sections and for evaluating the potential dynamic hazards. However, most studies have focused on horizontal coal–rock composites and the mechanical properties of inclined coal–rock composites have not been considered. To explore the influence of different confining pressures and inclined coal seam thicknesses on the mechanical properties and failure characteristics of rock–coal–rock (RCR) composites, a numerical model based on the particle flow code was used to perform simulations on five inclined RCR composites at different confining pressures. The results show that the mechanical properties and failure characteristics of the RCR composites are affected considerably by the inclined coal seam thickness and the confining pressure. (1) When the inclined coal seam thickness is constant, the elasticity modulus of the inclined RCR composite increases nonlinearly with the confining pressure at first, and then remains constant. At the same confining pressure, the elasticity modulus of the inclined RCR composite decreases nonlinearly with the inclined coal seam thickness. (2) When the confining pressure is constant, the peak stress of the inclined RCR composite decreases with the increase of the inclined coal seam thickness. When the inclined coal seam thickness is constant, the peak stress increases with the confining pressure. (3) As the inclined coal seam thickness increases, the peak strain of the inclined RCR composite first decreases rapidly, and then remains constant when there is no confining pressure. When the confining pressure is between 5 and 20 MPa, the peak strain of the inclined RCR composite gradually increases. (4) In the absence of confining pressure, there are few microcracks in the rock at an inclined coal seam thickness of 10 mm, whereas all the other cracks are in the coal section. When the confining pressure ranges between 5 and 20 MPa, the failure modes of the RCR composite can be divided into Y- and X-types.


Author(s):  
Manfred Staat

AbstractExtension fractures are typical for the deformation under low or no confining pressure. They can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. In this article, it is shown that the simple extension strain criterion makes unrealistic strength predictions in biaxial compression and tension. To overcome this major limitation, a new extension strain criterion is proposed by adding a weighted principal shear component to the simple criterion. The shear weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr–Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting extension failure modes, which are unexpected in the classical understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain leading to dilatancy. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak stress CP. Different from compressive loading, tensile loading requires only a limited number of critical cracks to cause failure. Therefore, for tensile stresses, the failure criteria must be modified somehow, possibly by a cut-off corresponding to the CI stress. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion.


2021 ◽  
Vol 13 (13) ◽  
pp. 7498
Author(s):  
Tan Li ◽  
Jianzhuang Xiao

Concrete made with large-size recycled aggregates is a new kind of recycled concrete, where the size of the recycled aggregate used is 25–80 mm, which is generally three times that of conventional aggregate. Thus, its composition and mechanical properties are different from that of conventional recycled concrete and can be applied in large-volume structures. In this study, recycled aggregate generated in two stages with randomly distributed gravels and mortar was used to replace the conventional recycled aggregate model, to observe the internal stress state and cracking of the large-size recycled aggregate. This paper also investigated the mechanical properties, such as the compressive strength, crack morphology, and stress–strain curve, of concrete with large-size recycled aggregates under different confining pressures and recycled aggregate incorporation ratios. Through this research, it was found that when compared with conventional concrete, under the confining pressure, the strength of large-size recycled aggregate concrete did not decrease significantly at the same stress state, moreover, the stiffness was increased. Confining pressure has a significant influence on the strength of large-size recycled aggregate cocrete.


Sign in / Sign up

Export Citation Format

Share Document