Influence of Physical and Mechanical Properties of the Substrate on the Behavior of Zr–Si–B Coatings under Sliding Friction and Cyclic Impact-Dynamic Loading

2020 ◽  
Vol 56 (5) ◽  
pp. 981-989
Author(s):  
Ph. V. Kiryukhantsev-Korneev ◽  
A. D. Sytchenko
2012 ◽  
Vol 51 (No. 4) ◽  
pp. 140-144
Author(s):  
Z. Tkáč ◽  
J. Jablonický ◽  
R. Abrahám ◽  
J. Klusa

This contribution is oriented on the field of dynamic loading analysis of three-point hitch of tractor hydraulic pump. The hydraulic pump is placed in circuit of three-point hitch of the tractor ZTS 160 45. Obtained data from operation experiments will be applied for simulation of dynamic loading of the tested hydraulic pump. The measurements were realized during position control with ploughing sets: tractor ZTS 160 45 + plough 5-PN-30 and tractor ZTS 160 45 + plough 7-PHX-35. During the test physical and mechanical properties of soil and operating parameters of ploughing sets were investigated. Pressures of hydraulic system were in range from 3.2 to 7 MPa at aggregation with plough 5-PN-30 and hydraulic pump was loaded. Pressures of hydraulic system during ploughing with ploughing set tractor ZTS 160 45 + plough 7-PHX-35 were in range from 1.8 to 14 MPa and two times hydraulic pump was unloading in time 2 seconds.


Author(s):  
Igor Nikiforov ◽  
Pavel Maltsev

The role of external friction and chip contraction during microcutting by abrasive grain is showed. The method for determining the relative change in the coefficient of friction during grinding is proposed. The hypothesis about the influence of physical and mechanical properties and microstructure of steel 35 on the volume removes metal through the change in the coefficient of sliding friction of the chip by face of the abrasive grain is experimentally proved.


2012 ◽  
Vol 736 ◽  
pp. 275-288 ◽  
Author(s):  
Preeti Makkar ◽  
Ramesh Chandra Agarwala ◽  
Vijaya Agarwala

Since the introduction of Electroless (EL) coating in 1946 by Brenner and Riddle, the process has been the subject of steady growth. It is one of the most elegant methods available for the production of alloy coatings on surface. The technique involves the autocatalytic reduction, at the substrate/solution interface, of cations by EL bath released from suitable chemical reducing agents. EL coating technique is simple one, as can be manifested just by controlling pH and temperature of the coating bath. Such coatings are reported to provide excellent physical and mechanical properties. The electroless coatings are being studied at Indian Institute of Technology Roorkee since 1985. The structural and morphological behavior of Ni-P coatings for different phosphorous contents has been extensively studied. Sub-micron size coating islands and their transformations have been deduced. The metallography studies using hot stage within TEM to follow the phase transformations occurring at various temperatures have been studied for Ni-B EL coatings. The realization of mechanical bonding along with chemical bonding between EL coating and the substrate has been explained by coated copper on ceramic powder. As a forward step towards composite coatings, Ni-P-C, Ni-P-Al2O3, Ni-P-ZrO2 has been developed by EL co-deposition technique. Ag-graphite coatings produced by EL technique exhibits nearly five times higher wear resistance and nearly two times better corrosion resistance apart from a good electrical conductor. The tribological behavior of electroless Ni-P-X and Ni-P coatings on steel and aluminium substrates in different conditions i.e., as coated, heat treated at various temperatures at different extents of time with different normal loads, have been studied in terms of dry sliding friction and wear against counter face of case hardened steel. In Ni-P-X nanocoating (X= ZrO2-Al2O3-Al3Zr), X has been produced in-situ and are of nanosize particles. Such coating could be done on carbon fibre of 7µ diameter uniformly. Ni-P-ferrite nanocoatings with thickness less than nearly 1mm thick, is exhibiting good absorption of microwave in the range of 12-18 GHz which can be exploited for radar applications. Micro-thickness coatings are paying ways to nanocoatings. Nanocoatings are the coatings in which either the thickness of the coating is in nanolevel or second phase that dispersed in the coat matrix is of nanosize. To further explore the field of EL nanocomposite coatings, now days, a work on EL Ni-P-ZnO, TiO2, Al2O3, ZrO2 and Ni-B-ZrO2 for its mechanical properties has been carried out.


2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


2016 ◽  
Vol 13 (2) ◽  
pp. 67
Author(s):  
Engku Liyana Zafirah Engku Mohd Suhaimi ◽  
Jamil Salleh ◽  
Suzaini Abd Ghani ◽  
Mohamad Faizul Yahya ◽  
Mohd Rozi Ahmad

An investigation on the properties of Tenun Pahang fabric performances using alternative yarns was conducted. The studies were made in order to evaluate whether the Tenun Pahang fabric could be produced economically and at the same time maintain the fabric quality. Traditional Tenun Pahang fabric uses silk for both warp and weft. For this project, two alternative yarns were used which were bamboo and modal, which were a little lower in cost compared to silk. These yarns were woven with two variations, one with the yarns as weft only while maintaining the silk warp and the other with both warp and weft using the alternative yarns. Four (4) physical testings and three (3) mechanical testings conducted on the fabric samples. The fabric samples were evaluated including weight, thickness, thread density, crease recovery angle, stiffness and drapability. The results show that modal/silk and bamboo silk fabrics are comparable in terms of stiffness and drapability, hence they have the potential to replace 100% silk Tenun Pahang.


2014 ◽  
Vol 62 (1) ◽  
pp. 129-137
Author(s):  
A. Sawicki ◽  
J. Mierczyński

Abstract A basic set of experiments for the determination of mechanical properties of sands is described. This includes the determination of basic physical and mechanical properties, as conventionally applied in soil mechanics, as well as some additional experiments, which provide further information on mechanical properties of granular soils. These additional experiments allow for determination of steady state and instability lines, stress-strain relations for isotropic loading and pure shearing, and simple cyclic shearing tests. Unconventional oedometric experiments are also presented. Necessary laboratory equipment is described, which includes a triaxial apparatus equipped with local strain gauges, an oedometer capable of measuring lateral stresses and a simple cyclic shearing apparatus. The above experiments provide additional information on soil’s properties, which is useful in studying the following phenomena: pre-failure deformations of sand including cyclic loading compaction, pore-pressure generation and liquefaction, both static and caused by cyclic loadings, the effect of sand initial anisotropy and various instabilities. An important feature of the experiments described is that they make it possible to determine the initial state of sand, defined as either contractive or dilative. Experimental results for the “Gdynia” model sand are shown.


Author(s):  
Thais Helena Sydenstricker Flores-Sahagun ◽  
Kelly Priscila Agapito ◽  
ROSA MARIA JIMENEZ AMEZCUA ◽  
Felipe Jedyn

Sign in / Sign up

Export Citation Format

Share Document