Freeze-thaw dewatering of oil sands fine tails

1999 ◽  
Vol 36 (4) ◽  
pp. 587-598 ◽  
Author(s):  
R F Dawson ◽  
D C Sego ◽  
G W Pollock

Laboratory and field experiments demonstrate that substantial dewatering occurs when the waste clay from oil sands operations is subjected to one cycle of freeze-thaw. The enhanced permeability resulting from the freezing process causes further dewatering and accompanying strength increases during post-thaw consolidation. The findings presented here were guided by a number of different materials handling scenarios which take advantage of the freeze-thaw process and are driven by the appropriate geotechnical, geochemical, and geothermal input parameters. Different conceptual design scenarios are examined to demonstrate how this process might be feasibly implemented at the commercial scale. Emphasis is placed on the large-scale requirements, sensitivity to input parameters, and the coupling of the continuing applied research with the conceptual materials handling models. The latter point is of generic interest to those involved in mine waste management.Key words: mine wastes, freeze-thaw, volume reduction, disposal, large strain consolidation.

2018 ◽  
Vol 55 (8) ◽  
pp. 1059-1066 ◽  
Author(s):  
G. Ward Wilson ◽  
Louis K. Kabwe ◽  
Nicholas A. Beier ◽  
J. Don Scott

Regulatory policy and regulations in Alberta require oil sands companies to reduce their production and storage of fluid fine tailings by creating deposits that can be reclaimed in a timely manner. To meet the regulatory requirements, some companies are adding flocculants to the fluid fine tailings and then using thickeners, inline flocculation or centrifuges to increase the solids content. Freeze–thaw and drying processes are then used to further dewater the tailings. The effects of flocculating, thickening, and freeze–thaw treatments were investigated by performing large-strain consolidation and shear strength tests on these treated fluid fine tailings. The consolidation and shear strength results were then compared with those of untreated fluid fine tailings. All of the treatments increased the hydraulic conductivity of the fluid fine tailings to some degree, but had little to no effect on the compressibility and shear strength. The effects of the treatment processes are discussed and evaluated.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1010
Author(s):  
Lei Zhang ◽  
Feipeng Ren ◽  
Hao Li ◽  
Dongbing Cheng ◽  
Baoyang Sun

As an important type of soil erosion, freeze-thaw erosion occurs primarily at high latitude and altitude. The overview on the effect of freeze-thaw on soil erosion was provided. Soil erosion was affected by freeze-thaw processes, as thawing and water erosion reinforce each other. Remote sensing provided an unprecedented approach for characterizing the timing, magnitude, and patterns of large-scale freeze-thaw and soil erosion changes. Furthermore, the essence of soil freeze-thaw was the freeze and thaw of soil moisture in the pores of soil. Freeze-thaw action mainly increased soil erodibility and made it more vulnerable to erosion by destroying soil structure, changing soil water content, bulk density, shear strength and aggregate stability, etc. However, the type and magnitude of changes of soil properties have been related to soil texture, water content, experimental conditions and the degree of exposure to freeze-thaw. The use of indoor and field experiments to further reveal the effect of freeze-thaw on soil erosion would facilitate improved forecasting, as well as prevention of soil erosion during thawing in regions with freeze-thaw cycles.


2020 ◽  
Vol 57 (10) ◽  
pp. 1595-1610 ◽  
Author(s):  
Fan Yu ◽  
Peijun Guo ◽  
Yuanming Lai ◽  
Dieter Stolle

This paper presents a thermohydromechanical framework to model frost heave and (thaw) consolidation simultaneously, in which effective and total stresses are taken as the stress variables for unfrozen and frozen soils, respectively. “Effective (total) stresses – void ratio – permeability” relations are proposed to interpret the frost heave behavior of soil in different cooling modes, (thaw) consolidation processes, and changes in key parameters induced by freeze–thaw cycles. The water flux function proposed by Yu et al. in a companion paper is used to calculate frost heave in the frozen zone and to determine the moving boundary of the unfrozen zone during thaw consolidation. Compared with conventional methods, two other modifications are made to characterize the effect of residual stress and the influence of freeze–thaw cycling on permeability in the thaw consolidation analysis. After the governing equations developed in Lagrangian coordinates are implemented in a finite-element system, the framework is firstly verified by a comparison with both small- and large-strain thaw consolidation theories, in terms of simulating a semi-infinite thaw consolidation case, and is then examined with a focus on the three modifications one-by-one. Following that, the framework is assessed by two numerical examples that reasonably reproduce the freeze–thaw cycling processes in both seasonal frost and permafrost regions.


Author(s):  
Alice C Ortmann ◽  
Susan E Cobanli ◽  
Thomas L King ◽  
Charles W. Greer ◽  
Gary Wohlgeschaffen ◽  
...  

ABSTRACT: 1141488 Production of bitumen from oil sands is predicted to rise over the next decade. Some of this increased production will be transported to coastal areas for export. While some product will be transported via rail, the majority is likely to be transported through pipelines as diluted bitumen. This unconventional oil product is a mixture of the highly viscous bitumen with differing amounts of diluent, which can include condensates, synthetic crudes or conventional crudes. As a mixture of products, the behaviour of diluted bitumen may differ from conventional heavy crude oils following a spill. This is of concern in Canada as the main transportation route for exporting diluted bitumen will go through the Salish Sea, home to endangered southern resident killer whales, economically important commercial and traditional fisheries including Pacific salmon, and millions of people. Knowing how diluted bitumen products will behave and their potential impacts if a spill occurs in these coastal waters is important in developing an effective response plan. The Centre for Offshore Oil, Gas and Energy Research (COOGER) within Fisheries and Oceans Canada (DFO) has been carrying out research to characterize and predict the fate and behaviour of diluted bitumen products in marine environments over the last seven years. Using a combination of small-scale microcosms, medium-scale mesocosms, large-scale weathering and wave tank studies as well as field experiments, we have collected a broad range of data providing insights into how diluted bitumen might behave following a spill. Our research suggests that diluted bitumen will weather rapidly, with density and viscosity increasing significantly over the first 48 h. Low concentrations of hydrocarbons are typically detected in the water column, even in the presence of high energy breaking waves. The amount of weathering and water column hydrocarbons vary with season, but overall the microbial community shows a small response to the presence of diluted bitumen. Conventional spill response technologies may be used within the first 48 h of a spill, but extensive weathering will further limit their effectiveness. While the studies provide a more complete understanding of the fate and behaviour of diluted bitumen in coastal waters, there are important questions yet to be answered, some of which are presented here.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Elise J. Gay ◽  
Jessica L. Soyer ◽  
Nicolas Lapalu ◽  
Juliette Linglin ◽  
Isabelle Fudal ◽  
...  

Abstract Background The fungus Leptosphaeria maculans has an exceptionally long and complex relationship with its host plant, Brassica napus, during which it switches between different lifestyles, including asymptomatic, biotrophic, necrotrophic, and saprotrophic stages. The fungus is also exemplary of “two-speed” genome organisms in the genome of which gene-rich and repeat-rich regions alternate. Except for a few stages of plant infection under controlled conditions, nothing is known about the genes mobilized by the fungus throughout its life cycle, which may last several years in the field. Results We performed RNA-seq on samples corresponding to all stages of the interaction of L. maculans with its host plant, either alive or dead (stem residues after harvest) in controlled conditions or in field experiments under natural inoculum pressure, over periods of time ranging from a few days to months or years. A total of 102 biological samples corresponding to 37 sets of conditions were analyzed. We show here that about 9% of the genes of this fungus are highly expressed during its interactions with its host plant. These genes are distributed into eight well-defined expression clusters, corresponding to specific infection lifestyles or to tissue-specific genes. All expression clusters are enriched in effector genes, and one cluster is specific to the saprophytic lifestyle on plant residues. One cluster, including genes known to be involved in the first phase of asymptomatic fungal growth in leaves, is re-used at each asymptomatic growth stage, regardless of the type of organ infected. The expression of the genes of this cluster is repeatedly turned on and off during infection. Whatever their expression profile, the genes of these clusters are enriched in heterochromatin regions associated with H3K9me3 or H3K27me3 repressive marks. These findings provide support for the hypothesis that part of the fungal genes involved in niche adaptation is located in heterochromatic regions of the genome, conferring an extreme plasticity of expression. Conclusion This work opens up new avenues for plant disease control, by identifying stage-specific effectors that could be used as targets for the identification of novel durable disease resistance genes, or for the in-depth analysis of chromatin remodeling during plant infection, which could be manipulated to interfere with the global expression of effector genes at crucial stages of plant infection.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Claudia Santibañez ◽  
Luz María de la Fuente ◽  
Elena Bustamante ◽  
Sergio Silva ◽  
Pedro León-Lobos ◽  
...  

The study evaluated the efficacy of organic- and hard-rock mine waste type materials on aided phytostabilization of Cu mine tailings under semiarid Mediterranean conditions in order to promote integrated waste management practices at local levels and to rehabilitate large-scale (from 300 to 3,000 ha) postoperative tailings storage facilities (TSFs). A field trial with 13 treatments was established on a TSF to test the efficacy of six waste-type locally available amendments (grape and olive residues, biosolids, goat manure, sediments from irrigation canals, and rubble from Cu-oxide lixiviation piles) during early phases of site rehabilitation. Results showed that, even though an interesting range of waste-type materials were tested, biosolids (100 t ha-1dry weight, d.w.) and grape residues (200 t ha-1d.w.), either alone or mixed, were the most suitable organic amendments when incorporated into tailings to a depth of 20 cm. Incorporation of both rubble from Cu-oxide lixiviation piles and goat manure into upper tailings also had effective results. All these treatments improved chemical and microbiological properties of tailings and lead to a significant increase in plant yield after three years from trial establishment. Longer-term evaluations are, however required to evaluate self sustainability of created systems without further incorporation of amendments.


Author(s):  
Aaron M. Swedberg ◽  
Shawn P. Reese ◽  
Steve A. Maas ◽  
Benjamin J. Ellis ◽  
Jeffrey A. Weiss

Ligament volumetric behavior controls fluid and thus nutrient movement as well as the mechanical response of the tissue to applied loads. The reported Poisson’s ratios for tendon and ligament subjected to tensile deformation loading along the fiber direction are large, ranging from 0.8 ± 0.3 in rat tail tendon fascicles [1] to 2.98 ± 2.59 in bovine flexor tendon [2]. These Poisson’s ratios are indicative of volume loss and thus fluid exudation [3,4]. We have developed micromechanical finite element models that can reproduce both the characteristic nonlinear stress-strain behavior and large, strain-dependent Poisson’s ratios seen in tendons and ligaments [5], but these models are computationally expensive and unfeasible for large scale, whole joint models. The objectives of this research were to develop an anisotropic, continuum based constitutive model for ligaments and tendons that can describe strain-dependent Poisson’s ratios much larger than the isotropic limit of 0.5. Further, we sought to demonstrate the ability of the model to describe experimental data, and to show that the model can be combined with biphasic theory to describe the rate- and time-dependent behavior of ligament and tendon.


Author(s):  
Christopher Pagano ◽  
Flavia Tauro ◽  
Salvatore Grimaldi ◽  
Maurizio Porfiri

Large scale particle image velocimetry (LSPIV) is a nonintrusive environmental monitoring methodology that allows for continuous characterization of surface flows in natural catchments. Despite its promise, the implementation of LSPIV in natural environments is limited to areas accessible to human operators. In this work, we propose a novel experimental configuration that allows for unsupervised LSPIV over large water bodies. Specifically, we design, develop, and characterize a lightweight, low cost, and stable quadricopter hosting a digital acquisition system. An active gimbal maintains the camera lens orthogonal to the water surface, thus preventing severe image distortions. Field experiments are performed to characterize the vehicle and assess the feasibility of the approach. We demonstrate that the quadricopter can hover above an area of 1×1m2 for 4–5 minutes with a payload of 500g. Further, LSPIV measurements on a natural stream confirm that the methodology can be reliably used for surface flow studies.


Plant Disease ◽  
1997 ◽  
Vol 81 (5) ◽  
pp. 469-474 ◽  
Author(s):  
A. Gamliel ◽  
A. Grinstein ◽  
Y. Peretz ◽  
L. Klein ◽  
A. Nachmias ◽  
...  

The use of gas-impermeable films to reduce the dosage of methyl bromide (MB) required to control Verticillium wilt in potatoes was examined in field experiments, conducted in soils naturally infested with Verticillium dahliae. The incidence and severity of Verticillium wilt were significantly reduced (by 74 to 94%) by fumigation with MB at 50 g/m2 under standard low density polyethylene (LDPE) or at 25 g/m2 under gas-impermeable films. Fumigation at 25 g/m2 under LDPE was less effective. Disease severity was inversely correlated (r2 = 0.89 to 0.91) with chlorophyll content in the leaves. Fumigation also reduced (by 89 to 100%) stem colonization by the pathogen. Potato yield in the fumigated plots was significantly higher (26 to 69%), than in their nonfumigated counterparts, and was inversely correlated with disease index (r2 = 0.69 to 0.9). The percentage of high-value tubers (above 45 g) was 52 to 56% of total yield in the fumigated plots as compared with 32 to 40% in the nonfumigated controls. Thus, fumigation also improved the commercial quality of tuber yield. Effective control of V. dahliae and yield increases following MB fumigation at the recommended dosage or at a reduced dosage with gas-impermeable films was also observed in a consecutive crop. These results were verified in a large-scale field experiment using commercial applications, further demonstrating the feasibility of reducing MB dosages under farm conditions, without reducing its effectiveness in terms of disease control and yield improvement.


Sign in / Sign up

Export Citation Format

Share Document