2003 Fred Beamish Award Lecture — Exploring the dynamics of biological systems by mass spectrometry

2004 ◽  
Vol 82 (11) ◽  
pp. 1565-1580 ◽  
Author(s):  
Lars Konermann

This review describes the use of electrospray ionization mass spectrometry (ESI-MS) in conjunction with on-line rapid mixing techniques. This combination, termed "time-resolved" ESI-MS, provides a powerful approach for studying solution-phase reactions on timescales as short as a few milliseconds. Of particular interest is the application of this technique for monitoring protein folding reactions. Time-resolved ESI-MS can provide detailed information on structural changes of the polypeptide chain, while at the same time probing the occurrence of noncovalent ligand–protein interactions. Especially when used in combination with hydrogen–deuterium pulse labeling, these measurements yield valuable structural information on short-lived folding intermediates. Similar approaches can be used to monitor the dynamics of proteins under equilibrium conditions. Another important application of time-resolved ESI-MS are mechanistic studies on enzyme-catalyzed processes. These reactions can be monitored under presteady-state conditions, without requiring artificial chromophoric substrates or radioactive labeling. We also discuss the use of ESI-MS for monitoring noncovalent ligand–protein interactions by diffusion measurements. In contrast to conventional MS-based techniques, this approach does not rely on the preservation of noncovalent interactions in the gas phase. It appears that diffusion measurements by ESI-MS could become an interesting alternative to existing methods for the high throughput screening of compound libraries in the context of drug discovery.Key words: reaction intermediate, rapid mixing, kinetics, protein conformation, protein function.

2002 ◽  
Vol 8 (5) ◽  
pp. 381-387 ◽  
Author(s):  
Hui Lin ◽  
Chhabil Dass

Electrospray ionization-mass spectrometry (ESI-MS) was employed to study methanol-induced conformational changes in adrenocorticotrophic hormone (ACTH). ACTH, a 39–residue peptide, is a member of the proopiomelanocortin family of peptides. Charge-state distribution (CSD) and hydrogen–deuterium (H/D) exchange were used to monitor the conformational changes as a function of methanol concentration. The latter experiments were conducted via time-resolved ESI-MS in a continuous-flow apparatus. The CSD and the H/D exchange experimental data both reveal that ACTH exists, presumably in a random coil open structure in aqueous media, but assumes a more compact helical conformation with increased concentration of methanol. The H/D exchange experiments also reveal that 79% of ACTH is present as α-helix in mixed water-methanol solvent media.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Tyler J. Mason ◽  
Harmonie M. Bettenhausen ◽  
Jacqueline M. Chaparro ◽  
Mark E. Uchanski ◽  
Jessica E. Prenni

AbstractHorticulturists are interested in evaluating how cultivar, environment, or production system inputs can affect postharvest quality. Ambient mass spectrometry approaches enable analysis of minimally processed samples under ambient conditions and offer an attractive high-throughput alternative for assessing quality characteristics in plant products. Here, we evaluate direct analysis in real time (DART-MS) mass spectrometry and rapid evaporative ionization-mass spectrometry (REIMS) to assess quality characteristics in various pepper (Capsicum annuum L.) cultivars. DART-MS exhibited the ability to discriminate between pod colors and pungency based on chemical fingerprints, while REIMS could distinguish pepper market class (e.g., bell, lunchbox, and popper). Furthermore, DART-MS analysis resulted in the putative detection of important bioactive compounds in human diet such as vitamin C, p-coumaric acid, and capsaicin. The results of this study demonstrate the potential for these approaches as accessible and reliable tools for high throughput screening of pepper quality.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2545
Author(s):  
Luna Song ◽  
Hehe Bai ◽  
Chenyang Liu ◽  
Wenjun Gong ◽  
Ai Wang ◽  
...  

Two light-activated NO donors [RuCl(qn)(Lbpy)(NO)]X with 8-hydroxyquinoline (qn) and 2,2′-bipyridine derivatives (Lbpy) as co-ligands were synthesized (Lbpy1 = 4,4′-dicarboxyl-2,2′-dipyridine, X = Cl− and Lbpy2 = 4,4′-dimethoxycarbonyl-2,2′-dipyridine, X = NO3−), and characterized using ultraviolet–visible (UV-vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (1H NMR), elemental analysis and electrospray ionization mass spectrometry (ESI-MS) spectra. The [RuCl(qn)(Lbpy2)(NO)]NO3 complex was crystallized and exhibited distorted octahedral geometry, in which the Ru–N(O) bond length was 1.752(6) Å and the Ru–N–O angle was 177.6(6)°. Time-resolved FT-IR and electron paramagnetic resonance (EPR) spectra were used to confirm the photoactivated NO release of the complexes. The binding constant (Kb) of two complexes with human serum albumin (HSA) and DNA were quantitatively evaluated using fluorescence spectroscopy, Ru-Lbpy1 (Kb~106 with HSA and ~104 with DNA) had higher affinity than Ru-Lbpy2. The interactions between the complexes and HSA were investigated using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) and EPR spectra. HSA can be used as a carrier to facilitate the release of NO from the complexes upon photoirradiation. The confocal imaging of photo-induced NO release in living cells was successfully observed with a fluorescent NO probe. Moreover, the photocleavage of pBR322 DNA for the complexes and the effect of different Lbpy substituted groups in the complexes on their reactivity were analyzed.


2017 ◽  
Vol 22 (10) ◽  
pp. 1246-1252 ◽  
Author(s):  
Kishore Kumar Jagadeesan ◽  
Simon Ekström

Recently, mass spectrometry (MS) has emerged as an important tool for high-throughput screening (HTS) providing a direct and label-free detection method, complementing traditional fluorescent and colorimetric methodologies. Among the various MS techniques used for HTS, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides many of the characteristics required for high-throughput analyses, such as low cost, speed, and automation. However, visualization and analysis of the large datasets generated by HTS MALDI-MS can pose significant challenges, especially for multiparametric experiments. The datasets can be generated fast, and the complexity of the experimental data (e.g., screening many different sorbent phases, the sorbent mass, and the load, wash, and elution conditions) makes manual data analysis difficult. To address these challenges, a comprehensive informatics tool called MALDIViz was developed. This tool is an R-Shiny-based web application, accessible independently of the operating system and without the need to install any program locally. It has been designed to facilitate easy analysis and visualization of MALDI-MS datasets, comparison of multiplex experiments, and export of the analysis results to high-quality images.


2020 ◽  
Author(s):  
Danye Qiu ◽  
Miranda S. Wilson ◽  
Verena B. Eisenbeis ◽  
Robert K. Harmel ◽  
Esther Riemer ◽  
...  

AbstractThe analysis of myo-inositol phosphates (InsPs) and myo-inositol pyrophosphates (PP-InsPs) is a daunting challenge due to the large number of possible isomers, the absence of a chromophore, the high charge density, the low abundance, and the instability of the esters and anhydrides. Given their importance in biology, an analytical approach to follow and understand this complex signaling hub is highly desirable. Here, capillary electrophoresis (CE) coupled to electrospray ionization mass spectrometry (ESI-MS) is implemented to analyze complex mixtures of InsPs and PP-InsPs with high sensitivity. Stable isotope labeled (SIL) internal standards allow for matrix-independent quantitative assignment. The method is validated in wild-type and knockout mammalian cell lines and in model organisms. SIL-CE-ESI-MS enables for the first time the accurate monitoring of InsPs and PP-InsPs arising from compartmentalized cellular synthesis pathways, by feeding cells with either [13C6]-myo-inositol or [13C6]-D-glucose. In doing so, we uncover that there must be unknown inositol synthesis pathways in mammals, highlighting the unique potential of this method to dissect inositol phosphate metabolism and signalling.


Sign in / Sign up

Export Citation Format

Share Document