LYCOCTONINE AND ITS OXIDATION PRODUCTS

1952 ◽  
Vol 30 (9) ◽  
pp. 627-645 ◽  
Author(s):  
O. E. Edwards ◽  
Léo Marion

The ultraviolet spectra, basic strengths, and N-alkyl groups of the aconite alkaloids are discussed. Pyropseudaconine has been shown to contain a conjugated system. The formulation C19H19–2,(OH)3,(OCH3)4NC2H5 has been confirmed for lycoctonine. Study of its oxidation products has shown that lycoctonine has a methylene group adjacent to the nitrogen and a primary hydroxyl group. The two remaining hydroxyls have been shown to be vicinal, with one probably secondary and the other tertiary. A carbinolamine structure is suggested for hydroxylycoctonine. The new bases, isolycoctonine, desoxylycoctonine, and des-(oxymethylene)-lycoctonine are described.

1966 ◽  
Vol 44 (15) ◽  
pp. 1757-1764 ◽  
Author(s):  
A. S. Perlin

The products obtained by the periodate oxidation of methyl α- and β-D-xylopyranosides have been examined by nuclear magnetic resonance spectroscopy. In deuterium oxide each product exists mainly in two forms, one of which is a hydrated dialdehyde and the other a hemialdal (1,4-dioxane derivative). In dimethyl sulfoxide the dialdehyde cyclizes slowly to yield the hemialdal which, at equilibrium, is found to be by far the most stable of the many isomeric forms possible. The spectrum of this hemialdal in both solvents provides an example of a degenerate ABX type of pattern. The spectra of the products prepared from 5-deuterated xylosides show that the 1-methoxyl group of each hemialdal is axial and the 4-hydroxyl group equatorial, and that the one derived from the β-anomer possesses an inverted chair conformation relative to that of the other hemialdal and of the glycoside itself. The 2-hydroxyl group of each hemialdal appears to be axially oriented. The data support the long-standing view that glycol scission of anomeric aldopentopyranosides leads to products that are mirror images.It has been found also that each product yields a mixture of several p-nitrobenzoates.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 552
Author(s):  
Dominika Kozicka ◽  
Paulina Zieleźny ◽  
Karol Erfurt ◽  
Jakub Adamek

Herein we describe the development and optimization of a two-step procedure for the synthesis of N-protected 1-aminomethylphosphonium salts from imides, amides, carbamates, or lactams. Our “step-by-step” methodology involves the transformation of amide-type substrates to the corresponding hydroxymethyl derivatives, followed by the substitution of the hydroxyl group with a phosphonium moiety. The first step of the described synthesis was conducted based on well-known protocols for hydroxymethylation with formaldehyde or paraformaldehyde. In turn, the second (substitution) stage required optimization studies. In general, reactions of amide, carbamate, and lactam derivatives occurred at a temperature of 70 °C in a relatively short time (1 h). On the other hand, N-hydroxymethylimides reacted with triarylphosphonium salts at a much higher temperature (135 °C) and over longer reaction times (as much as 30 h). However, the proposed strategy is very efficient, especially when NaBr is used as a catalyst. Moreover, a simple work-up procedure involving only crystallization afforded good to excellent yields (up to 99%).


1971 ◽  
Vol 24 (3) ◽  
pp. 521 ◽  
Author(s):  
S Ahmed ◽  
M Alauddin ◽  
B Caddy ◽  
M Martin-Smith ◽  
WTL Sidwell ◽  
...  

The preparation of 3α,12α-bisdimethylamino-5β-cholane dimethiodide, 3α,12α-bisdimethylamino-5β-cholane dimethiodide, 3α,12α- bisdimethylamino-24-nor-5β-cholanedimethiodide, and 3α,12α- bisdimethylamino-24-nor-5β-cholanediethiodide, from deoxycholic acid are described. During this work it was found that attempted copper- quinoline decarboxylation of dehydrocholic acid gives rise to lactol formation, and that what had previously been considered to be 3α,12α- dihydroxy-5β-cholane is a mixture of this compound and 12α,24- dihydroxy-5β-cholane. Comparable selectivity of attack by methanesulphonyl chloride and toluene-p-sulphonyl chloride occurs with various polyhydric alcohols derived from bile acids, as evidenced from the products of reduction of the sulphonates with lithium aluminium hydride. With both 5α- and 5β-cholane derivatives, a C 3 equatorial hydroxyl group exhibits comparable reactivity to the terminal primary hydroxyl group, generated from the bile acid carboxylic group, towards both sulphonyl chlorides. With axial hydroxyl groups at C 7 and C 12, toluene-p-sulphonate formation is much more difficult than methane- sulphonate formation. Reduction by means of lithium aluminium hydride of equatorial sulphonate esters at C 7 and C 12 gives rise to a methylene group, but the axial sulphonates under the same conditions give the axial alcohol. The same clear distinction between equatorial and axial sulphonate esters is not observed at C 3 and C 6, but 17α- methanesulphonyloxy-5α-androstane gives 5α-androstane and the 17β- ester gives 17β-hydroxy-5α-androstane. Reduction of 12-oximino groups in both 5α- and 5β-cholanes with sodium and ethanol, hydrogen in the presence of a catalyst, or lithium aluminium hydride gives solely the 12α-amino compound.


1983 ◽  
Vol 245 (4) ◽  
pp. E359-E364 ◽  
Author(s):  
G. S. Reddy ◽  
G. Jones ◽  
S. W. Kooh ◽  
D. Fraser ◽  
H. F. DeLuca

Previously we have shown that the isolated perfused kidney from vitamin D-deficient rats converts [3H]25(OH)D3 into [3H]1 alpha,25(OH)2D3. When certain vitamin D metabolites were added to perfusate the same kidney began to synthesize [3H]24R,25(OH)2D3. In this study we investigated the structural requirements of the vitamin D molecule necessary to stimulate synthesis of [3H]24R,25(OH)2D3 in a 1-hydroxylating kidney. Kidneys were perfused with tracer [3H]25(OH)D3 (450 pM) alone and in the presence of a variety of hydroxylated metabolites and fluorinated analogues of vitamin D3 at concentrations of 450 pM to 25 microM. Tracer [3H]25(OH)D3 alone resulted in synthesis of only [3H]1 alpha,25(OH)2D3 during the 6-h perfusion period. 25-Hydroxylated metabolites [25(OH)D3, 25 nM; 1 alpha,25(OH)2D3, 25 nM; 24R,25(OH)2D3, 25 nM; 24(F)2,25(OH)D3, 50 nM] stimulated [3H]24R,25(OH)2D3 production at 2 h of perfusion. On the other hand, analogues without the 25-hydroxyl group [D3; 1 alpha(OH)D3; 25(F)D3; 1 alpha(OH),25(F)D3; 1 alpha(F)D3; 1 beta(F)D3]; did not stimulate [3H]24R,25(OH)2D3 synthesis. We conclude that the 25-hydroxyl group is an essential determinant of 24-hydroxylation.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4545
Author(s):  
Nurul Amira Nurul Azman ◽  
Maram B. Alhawarri ◽  
Mira Syahfriena Amir Rawa ◽  
Roza Dianita ◽  
Amirah Mohd Gazzali ◽  
...  

Seventeen methanol extracts from different plant parts of five different Cassia species, including C. timorensis, C. grandis, C. fistula, C. spectabilis, and C. alata were screened against acetylcholinesterase (AChE). C. timorensis extracts were found to exhibit the highest inhibition towards AChE whereby the leaf, stem, and flower methanol extracts showed 94–97% inhibition. As far as we are aware, C. timorensis is one of the least explored Cassia spp. for bioactivity. Further fractionation led to the identification of six compounds, isolated for the first time from C. timorensis: 3-methoxyquercetin (1), benzenepropanoic acid (2), 9,12,15-octadecatrienoic acid (3), β-sitosterol (4), stigmasterol (5), and 1-octadecanol (6). Compound 1 showed moderate inhibition towards AChE (IC50: 83.71 μM), while the other compounds exhibited poor to slightly moderate AChE inhibitory activity. Molecular docking revealed that the methoxy substitution of 1 formed a hydrogen bond with TYR121 at the peripheral anionic site (PAS) and the hydroxyl group at C5 formed a covalent hydrogen bond with ASP72. Additionally, the OH group at the C3′ position formed an interaction with the protein at the acyl pocket (PHE288). This possibly explains the activity of 1 in blocking the entry of acetylcholine (ACh, the neurotransmitter), thus impeding the hydrolysis of ACh.


2013 ◽  
Vol 6 (5) ◽  
pp. 8855-8887
Author(s):  
J. Kangasluoma ◽  
C. Kuang ◽  
D. Wimmer ◽  
M. P. Rissanen ◽  
K. Lehtipalo ◽  
...  

Abstract. In this study we built a nano-CPC battery, consisting of four ultrafine CPCs optimized for the detection of sub 3 nm particles. Two of the CPCs use diethylene glycol as a working fluid: a laminar type diethlylene glycol CPC and a mixing type Airmodus A09 Particle Size Magnifier. The other two CPCs are a laminar type TSI 3025A and a TSI 3786 with butanol and water as the working fluids, respectively. The nano-CPC battery was calibrated with seven different test aerosols: tetra heptyl ammonium bromide, ammonium sulphate, sodium chloride, tungsten oxide, sucrose, candle flame products and limonene ozonolysis products. The results show that ammonium sulphate and sodium chloride have a higher activation efficiency with the water-based 3786 than with the butanol-based 3025A, whereas the other aerosols were activated better with butanol than with water as the working fluid. It is worthwhile to mention that limonene ozonolysis products were detected very poorly with all of the CPCs, butanol being the best fluid to activate the oxidation products. To explore how the detection efficiency is affected if the aerosol is an internal mixture of two different chemical substances, we made the first attempt to control the mixing state of sub 3 nm laboratory generated aerosol. We show that we generated an internally mixed aerosol of ammonium sulphate nucleated onto tungsten oxide seed particles, and observed that the activation efficiency of the internally mixed clusters was a function of the internal mixture composition.


1989 ◽  
Vol 56 (5) ◽  
pp. 749-754 ◽  
Author(s):  
David A. Pink ◽  
Lucie Hamboyan ◽  
Helen Aboud

SummaryUltraviolet spectra of solutions of instant and filter coffees have been analysed as a linear combination of component Gaussian bands. We show that the ratio, R′, of two of these bands, one at 329 nm due almost entirely to chlorogenic acid, and the other at 272 nm due to a coffee component not appearing in the chlorogenic acid spectrum, is analogous to the ratio R (Hamboyan et al. 1989). The use of R which is easier to measure than R′ has therefore been justified on physical grounds, based on the existence of component spectral bands. Filter coffees appeared to exhibit behaviour similar to that of instant coffees.


1971 ◽  
Vol 313 (6) ◽  
pp. 1039-1050 ◽  
Author(s):  
A. F. A. Shalaby ◽  
A. A. El-Sayed ◽  
H. A. Daboun
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document