THE REACTIONS OF ACTIVE NITROGEN WITH ALKYL CHLORIDES

1956 ◽  
Vol 34 (8) ◽  
pp. 1074-1082 ◽  
Author(s):  
B. Dunford ◽  
H. G. V. Evans ◽  
C. A. Winkler

The reactions of active nitrogen with methyl, ethyl, vinyl, propyl, and isopropyl chlorides yielded hydrogen cyanide and hydrogen chloride as the main products. Small amounts of cyanogen and a polymer were formed from all the halides, and all except methyl chloride also yielded small amounts of C2 and C3 hydrocarbons. The observed changes in amounts of products recovered with different reactant flow rates were characteristic of a fast reaction in which complete consumption of either reactant occurs when the other is present in excess. Mechanisms for the reactions are suggested on the basis that relatively long-lived complexes are formed in the initial attack of a nitrogen atom on the alkyl chloride.


1958 ◽  
Vol 36 (9) ◽  
pp. 1223-1226 ◽  
Author(s):  
S. E. Sobering ◽  
C. A. Winkler

Cyanogen chloride and chlorine were the only gaseous products observed in the reaction of active nitrogen with carbon tetrachloride at 110° and 420 °C. The product yields tended towards limiting values at higher reactant flow rates, and increased with increase of temperature at all flow rates. The reactions of active nitrogen with chloroform and dichloromethane at 260° and 420 °C yielded hydrogen chloride, hydrogen cyanide, and cyanogen, in addition to cyanogen chloride and chlorine. The behavior of the product yields with reactant flow rates and temperature was similar to that of the products from carbon tetrachloride.



1954 ◽  
Vol 32 (7) ◽  
pp. 718-724 ◽  
Author(s):  
R. A. Back ◽  
C. A. Winkler

The main product of the reactions of active nitrogen with n- and iso-butanes at 75 °C. and 250 °C. was hydrogen cyanide. Small amounts of C2 hydrocarbons, mainly ethylene and acetylene, were produced in both reactions. Second order rate constants were calculated on the assumption that the reactive species in active nitrogen is atomic nitrogen, and that the initial attack of a nitrogen atom is the rate-controlling step. The activation energies were then estimated to be 3.6 kcal. and 3.1 kcal. and the probability factors 4.5 × 10−4 and 4.4 × 10−4, for the n-butane and isobutane reactions respectively.



1955 ◽  
Vol 33 (4) ◽  
pp. 692-698 ◽  
Author(s):  
G. R. Freeman ◽  
C. A. Winkler

Hydrazine was completely destroyed by active nitrogen, at both 150 °C. and 480 °C., up to a hydrazine flow rate of about 22 × 10−6 mole per sec., whereas ammonia production was small at hydrazine flow rates below about 12 × 10−6 mole per sec. Thus it appears that ammonia is formed in secondary reactions only. The results indicate that NH2 radicals rather than hydrogen atoms may be prominent in secondary reactions. Comparison of the rate of hydrazine destruction with the rate of production of hydrogen cyanide from ethylene indicates that excited nitrogen molecules do not make a large contribution to the chemical reactivity of active nitrogen.



1968 ◽  
Vol 46 (22) ◽  
pp. 3483-3489 ◽  
Author(s):  
N. Madhavan ◽  
W. E. Jones

The reactions of the fluorocarbon olefins, C2F4, C3F6, and C4F8-2, with active nitrogen were studied in a flow system. The active nitrogen was produced by a microwave discharge at a concentration of 2.1 × 10−6 mole/s. The major gaseous products of the reactions are fluorocarbons and their production was studied quantitatively at the temperatures 25, 250, and 400 °C and at a large number of reactant flow rates to a maximum of approximately 3 × 10−6 mole/s.Three nitrogen-containing compounds, FCN, N2O, and a polymer of composition (C3F5N)n were detected as products in all three reactions; FCN and N2O are found only in very small amounts.Mechanisms for each of the reactions are discussed.



1954 ◽  
Vol 32 (4) ◽  
pp. 351-355 ◽  
Author(s):  
M. Onyszchuk ◽  
L. Breitman ◽  
C. A. Winkler

The reaction of nitrogen atoms with propane has been found to produce hydrogen cyanide as the main product, together with smaller amounts of acetylene, ethylene, and ethane, which were recovered at all propane flow rates. Complete consumption of nitrogen atoms was not attained at any propane flow rate used at 63 °C, but was attained at 250 °C for ratios of propane to nitrogen atoms greater than 1.3. An activation energy of 5.6 ± 0.6 kcal. and a steric factor between 10−2 and 10−3 was estimated from second order rate constants.



1959 ◽  
Vol 37 (4) ◽  
pp. 655-659 ◽  
Author(s):  
A. Schavo ◽  
C. A. Winkler

Hydrogen cyanide was the main nitrogen-containing product of all three reactions, but whereas only about one-half the available active nitrogen was converted to product in the acetylene reaction, the conversion by methyl- and dimethyl-acetylene was substantially complete. A faster-than-linear increase of HCN production with acetylene flow rate was observed at low flow rates. Similar behavior was just perceptible in the corresponding curve for methylacetylene, while no observable inflection was present with dimethylacetylene. Polymer formation was pronounced with acetylene, less so with methylacetylene, and practically absent with dimethylacetylene. Small amounts of cyanogen resulted from all three reactions, while condensable hydrocarbons were obtained in significant yields from the methyl- and dimethyl-acetylene reactions only at higher flow rates of the alkynes.



Author(s):  
Alexander D. Bekman ◽  
Sergey V. Stepanov ◽  
Alexander A. Ruchkin ◽  
Dmitry V. Zelenin

The quantitative evaluation of producer and injector well interference based on well operation data (profiles of flow rates/injectivities and bottomhole/reservoir pressures) with the help of CRM (Capacitance-Resistive Models) is an optimization problem with large set of variables and constraints. The analytical solution cannot be found because of the complex form of the objective function for this problem. Attempts to find the solution with stochastic algorithms take unacceptable time and the result may be far from the optimal solution. Besides, the use of universal (commercial) optimizers hides the details of step by step solution from the user, for example&nbsp;— the ambiguity of the solution as the result of data inaccuracy.<br> The present article concerns two variants of CRM problem. The authors present a new algorithm of solving the problems with the help of “General Quadratic Programming Algorithm”. The main advantage of the new algorithm is the greater performance in comparison with the other known algorithms. Its other advantage is the possibility of an ambiguity analysis. This article studies the conditions which guarantee that the first variant of problem has a unique solution, which can be found with the presented algorithm. Another algorithm for finding the approximate solution for the second variant of the problem is also considered. The method of visualization of approximate solutions set is presented. The results of experiments comparing the new algorithm with some previously known are given.



1948 ◽  
Vol 21 (4) ◽  
pp. 853-859
Author(s):  
R. F. A. Altman

Abstract As numerous investigators have shown, some of the nonrubber components of Hevea latex have a decided accelerating action on the process of vulcanization. A survey of the literature on this subject points to the validity of certain general facts. 1. Among the nonrubber components of latex which have been investigated, certain nitrogenous bases appear to be most important for accelerating the rate of vulcanization. 2. These nitrogen bases apparently occur partly naturally in fresh latex, and partly as the result of putrefaction, heating, and other decomposition processes. 3. The nitrogen bases naturally present in fresh latex at later stages have been identified by Altman to be trigonelline, stachhydrine, betonicine, choline, methylamine, trimethylamine, and ammonia. These bases are markedly active in vulcanization, as will be seen in the section on experimental results. 4. The nitrogenous substances formed by the decomposition processes have only partly been identified, on the one hand as tetra- and pentamethylene diamine and some amino acids, on the other hand as alkaloids, proline, diamino acids, etc. 5. It has been generally accepted that these nitrogenous substances are derived from the proteins of the latex. 6. Decomposition appears to be connected with the formation of a considerable amount of acids. 7. The production of volatile nitrogen bases as a rule accompanies the decomposition processes. These volatile products have not been identified. 8. The active nitrogen bases, either already formed or derived from complex nitrogenous substances, seem to be soluble in water but only slightly soluble in acetone.



1952 ◽  
Vol 30 (12) ◽  
pp. 915-921 ◽  
Author(s):  
G. S. Trick ◽  
C. A. Winkler

The reaction of nitrogen atoms with propylene has been found to produce hydrogen cyanide and ethylene as the main products, together with smaller amounts of ethane and propane and traces of acetylene and of a C4 fraction. With excess propylene, the nitrogen atoms were completely consumed and for the reaction at 242 °C., 0.77 mole of ethylene was produced for each mole of excess propylene added. For reactions at lower temperatures, less ethylene was produced. The proposed mechanism involves formation of a complex between the nitrogen atom and the double bond of propylene, followed by decomposition to ethylene, hydrogen cyanide, and atomic hydrogen. The ethylene would then react with atomic nitrogen in a similar manner.



Author(s):  
Masahiro Ishida ◽  
Daisaku Sakaguchi ◽  
Hironobu Ueki

An optimization of the inlet ring groove arrangement has been pursued in the present study for obtaining better impeller characteristics and a wider operation range at both small and large flow rates in a high specific speed type centrifugal impeller with inducer. The effects of the shape parameters with respect to the inlet ring groove on the impeller characteristic and the flow incidence were analyzed mainly based on numerical simulations, but also compared to the experimental results. At small flow rates, a significant improvement in the impeller characteristic is achieved due to reduction in the excessive-positive flow incidence by optimizing both location and width of the rear groove near the inducer tip throat. On the other hand, the impeller characteristic is improved at large flow rates by implementing the corner radius at the rear groove edge and by placing another front ring groove in the suction pipe. As a result, by the optimized configuration of the front and rear ring grooves, the unstable flow range of the test impeller can be reduced by about 50% without deterioration of the impeller characteristic even at the 125% flow rate.



Sign in / Sign up

Export Citation Format

Share Document