KINETICS OF THE PHOTOCHLORINATION OF MONOCHLOROMETHYL CHLOROFORMATE IN THE GAS PHASE

1957 ◽  
Vol 35 (11) ◽  
pp. 1341-1350 ◽  
Author(s):  
M. J. Dignam ◽  
W. G. Forbes ◽  
D. J. Le Roy

The general features of the mechanism of the over-all process [Formula: see text][Formula: see text] are similar to those for the over-all process [Formula: see text][Formula: see text] studied previously. The reaction is inhibited by HCl. Chains are terminated by two processes, one of which is first order, the other second order in atomic chlorine. The first order process is not entirely diffusion controlled and a theory is advanced to account for its nature; the homogeneous combination of chlorine atoms requires a third body, mono- and di-chloromethyl chloroformate being particularly effective. The activation energy for hydrogen abstraction from monochloromethyl chloroformate by atomic chlorine is 5.2 kcal. per mole. The C—H bond dissociation energy in monochloromethyl chloroformate is estimated to be 99.8 ± 4.5 kcal. per mole.

1969 ◽  
Vol 114 (4) ◽  
pp. 719-724 ◽  
Author(s):  
Charles Phelps ◽  
Eraldo Antonini

1. Static titrations reveal an exact stoicheiometry between various haem derivatives and apoperoxidase prepared from one isoenzyme of the horseradish enzyme. 2. Carbon monoxide–protohaem reacts rapidly with apoperoxidase and the kinetics can be accounted for by a mechanism already applied to the reaction of carbon monoxide–haem derivatives with apomyoglobin and apohaemoglobin. 3. According to this mechanism a complex is formed first whose combination and dissociation velocity constants are 5×108m−1sec.−1 and 103sec.−1 at pH9·1 and 20°. The complex is converted into carbon monoxide–haemoprotein in a first-order process with a rate constant of 235sec.−1 for peroxidase and 364sec.−1 for myoglobin at pH9·1 and 20°. 4. The effects of pH and temperature were examined. The activation energy for the process of complex-isomerization is about 13kcal./mole. 5. The similarity in the kinetics of the reactions of carbon monoxide–haem with apoperoxidase and with apomyoglobin suggests structural similarities at the haem-binding sites of the two proteins.


1958 ◽  
Vol 36 (12) ◽  
pp. 1729-1734 ◽  
Author(s):  
J. E. Hazell ◽  
K. E. Russell

The reaction of DPPH (2,2-diphenyl-1-picrylhydrazyl) with N-phenyl-1-naphthylamine, N-phenyl-2-naphthylamine, diphenylamine, and methylaniline has been studied and has been shown to be primarily a hydrogen abstraction process. Two moles DPPH react with 1–1.15 moles secondary amine to give 1.7–1.8 moles 2,2-diphenyl-1-picrylhydrazine and further products.The reaction between DPPH and N-phenyl-1-naphthylamine is first order with respect to each reactant. The reaction of DPPH with the other amines is retarded by the major product 2,2-diphenyl-1-picrylhydrazine and the kinetics of the over-all reaction are complex. However second-order rate constants and activation energies have been obtained using initial rates of reaction. Possible reaction mechanisms are discussed.


1987 ◽  
Vol 52 (6) ◽  
pp. 1527-1544 ◽  
Author(s):  
Ulrika Králíková ◽  
Martin Bajus ◽  
Jozef Baxa

The kinetics of pyrolysis of methylcyclohexane was investigated from the viewpoint of coke formation in a steel tubular reactor (S/V = 6·65 cm-1) at 0·1 MPa, 700 to 820 °C and residence time 0·01 to 0·24 s. Decomposition of methylcyclohexane proceeds as a first order reaction with a frequency factor 6·31 . 1015 s-1 and activation energy 251·2 kJ mol-1. The course of secondary reactions associated with the formation of coke is discussed. Investigation of coke formation showed a greater tendency of methylcyclohexane to coking in comparison with heptane. A prominent role plays the course of dehydrogenation of cycloalkane radicals up to aromates, this being reflected by the overall conversion of methylcyclohexane, and, on the other hand the thus formed aromates enter the consecutive reactions leading to coke.


1960 ◽  
Vol 38 (8) ◽  
pp. 1261-1270 ◽  
Author(s):  
Margaret H. Back ◽  
A. H. Sehon

The thermal decomposition of phenylacetic acid was investigated by the toluene-carrier technique over the temperature range 587 to 722 °C. The products of the pyrolysis were carbon dioxide, carbon monoxide, hydrogen, methane, dibenzyl, and phenylketene. From the kinetics of the decomposition it was concluded that the reaction[Formula: see text]was a homogeneous, first-order process and that the rate constant of this dissociation step was represented by the expression k = 8 × 1012.e−55,000/RT sec−1. The activation energy of this reaction may be identified with D(C6H5CH2—COOH). The possible reactions of carboxyl radicals are discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Paweł Borowicz ◽  
Bernhard Nickel

This paper presents the description of triplet-triplet annihilation in the case of nondominant first-order decay of molecules in the triplet state. The kinetics of the statistical system is influenced by joined action of two processes: the first- and second-order decies. This kinetics can be described with analytical function if the rate parameter of second-order reaction is constant. The approach presented here combines the well-known Smoluchowski formula with the previously published intuitive and non-Fickian models of diffusion-controlled triplet-triplet annihilation. The kinetics of the delayed fluorescence of anthracene is used as a practical example of applicability of the model proposed. The advantages and limits of the proposed model are discussed.


The work described in this and the following paper is a continuation of that in parts I and II, devoted to elucidation of the mechanism of the reactions of methylene with chloroalkanes, with particular reference to the reactivities of singlet and triplet methylene in abstraction and insertion processes. The products of the reaction between methylene, prepared by the photolysis of ketene, and 1-chloropropane have been identified and estimated and their dependence on reactant pressures, photolysing wavelength and presence of foreign gases (oxygen and carbon mon­oxide) has been investigated. Both insertion and abstraction mechanisms contribute significantly to the over-all reaction, insertion being relatively much more important than with chloroethane. This type of process appears to be confined to singlet methylene. If, as seems likely, there is no insertion into C—Cl bonds under our conditions (see part IV), insertion into C2—H and C3—H bonds occurs in statistical ratio, approximately. On the other hand, the chlorine substituent reduces the probability of insertion into C—H bonds in its vicinity. As in the chloroethane system, both species of methylene show a high degree of selectivity in their abstraction reactions. We find that k S Cl / k S H >7.7, k T Cl / k T H < 0.14, where the k ’s are rate constants for abstraction, and the super- and subscripts indicate the species of methylene and the type of atom abstracted, respectively. Triplet methylene is discriminating in hydrogen abstraction from 1-C 3 H 7 Cl, the overall rates for atoms attached to C1, C2, C3 being in the ratios 2.63:1:0.


1960 ◽  
Vol 33 (2) ◽  
pp. 335-341
Author(s):  
Walter Scheele ◽  
Karl-Heinz Hillmer

Abstract As a complement to earlier investigations, and in order to examine more closely the connection between the chemical kinetics and the changes with vulcanization time of the physical properties in the case of vulcanization reactions, we used thiuram vulcanizations as an example, and concerned ourselves with the dependence of stress values (moduli) at different degrees of elongation and different vulcanization temperatures. We found: 1. Stress values attain a limiting value, dependent on the degree of elongation, but independent of the vulcanization temperature at constant elongation. 2. The rise in stress values with the vulcanization time is characterized by an initial delay, which, however, is practically nonexistent at higher temperatures. 3. The kinetics of the increase in stress values with vulcanization time are both qualitatively and quantitatively in accord with the dependence of the reciprocal equilibrium swelling on the vulcanization time; both processes, after a retardation, go according to the first order law and at the same rate. 4. From the temperature dependence of the rate constants of reciprocal equilibrium swelling, as well as of the increase in stress, an activation energy of 22 kcal/mole can be calculated, in good agreement with the activation energy of dithiocarbamate formation in thiuram vulcanizations.


1939 ◽  
Vol 23 (1) ◽  
pp. 21-39 ◽  
Author(s):  
Aurin M. Chase ◽  
Emil L. Smith

1. Measurements of visual purple regeneration in solution have been made by a procedure which minimized distortion of the results by other color changes so that density changes caused by the regenerating substance alone are obtained. 2. Bleaching a visual purple solution with blue and violet light causes a greater subsequent regeneration than does an equivalent bleaching with light which lacks blue and violet. This is due to a photosensitive substance which has a gradually increasing effective absorption toward the shorter wavelengths. It is uncertain whether this substance is a product of visual purple bleaching or is present in the solution before illumination. 3. The regeneration of visual purple measured at 560 mµ is maximal at about pH 6.7 and decreases markedly at more acid and more alkaline pH's. 4. The absorption spectrum of the regenerating material shows only a concentration change during the course of regeneration, but has a higher absorption at the shorter wavelengths than has visual purple before illumination. 5. Visual purple extractions made at various temperatures show no significant difference in per cent of regeneration. 6. The kinetics of regeneration is usually that of a first order process. Successive regenerations in the same solution have the same velocity constant but form smaller total amounts of regenerated substance. 7. In vivo, the frog retina shows no additional oxygen consumption while visual purple is regenerating.


1996 ◽  
Vol 50 (11) ◽  
pp. 1352-1359 ◽  
Author(s):  
Ping Chiang ◽  
Kuang-Pang Li ◽  
Tong-Ming Hseu

An idealized model for the kinetics of benzo[ a]pyrene (BaP) metabolism is established. As observed from experimental results, the BaP transfer from microcrystals to the cell membrane is definitely a first-order process. The rate constant of this process is signified as k1. We describe the surface–midplane exchange as reversible and use rate constants k2 and k3 to describe the inward and outward diffusions, respectively. The metabolism is identified as an irreversible reaction with a rate constant k4. If k2 and k3 are assumed to be fast and not rate determining, the effect of the metabolism rate, k4, on the number density of BaP in the midplane of the microsomal membrane, m3, can be estimated. If the metabolism rate is faster than or comparable to the distribution rates, k2 and k3, the BaP concentration in the membrane midplane, m3, will quickly be dissipated. But if k4 is extremely small, m3 will reach a plateau. Under conditions when k2 and k3 also play significant roles in determining the overall rate, more complicated patterns of m3 are expected.


Sign in / Sign up

Export Citation Format

Share Document