Studies on chitan (β-(1 → 4)-linked 2-acetamido-2-deoxy-D-glucan) fibers of the diatom Thalassiosira fluviatilis, Hustedt. III. The structure of chitan from x-ray diffraction and electron microscope observations

1968 ◽  
Vol 46 (9) ◽  
pp. 1513-1521 ◽  
Author(s):  
N. E. Dweltz ◽  
J. Ross Colvin ◽  
A. G. McInnes

The form and crystal structure of the fibers attached to the diatom Thalassiosira fluviatilis were studied by the electron microscope and x-ray diffraction.These fibers, which were shown previously to be pure, highly crystalline β-(1 → 4) linked poly-N-acetyl-D-glucosamine (chitan), are strap-like in cross section, 1000–2000 Å in width at their widest point close to the base, from which they taper uniformly to a very small tip at their outer extremity. Three connected filaments or microfibrils form the fiber at its widest point.The unit cell of chitan is monoclinic with the space group P21. The parameters of the unit cell are a = 4.80, b = 10.32, c = 9.83 Å, and β = 112°. The density of the chitan fibers is 1.495 g/cm3. There is only one polymeric chain per unit cell with a two-fold screw axis and therefore the chains are parallel to each other. A three-dimensional structure is proposed for chitan which is reasonable from stereochemical considerations and which is in good agreement with all observed x-ray diffraction data.

2011 ◽  
Vol 44 (3) ◽  
pp. 526-531 ◽  
Author(s):  
David Allen ◽  
Jochen Wittge ◽  
Jennifer Stopford ◽  
Andreas Danilewsky ◽  
Patrick McNally

In the semiconductor industry, wafer handling introduces micro-cracks at the wafer edge and the causal relationship of these cracks to wafer breakage is a difficult task. By way of understanding the wafer breakage process, a series of nano-indents were introduced both into 20 × 20 mm (100) wafer pieces and into whole wafers as a means of introducing controlled strain. Visualization of the three-dimensional structure of crystal defects has been demonstrated. The silicon samples were then treated by various thermal anneal processes to initiate the formation of dislocation loops around the indents. This article reports the three-dimensional X-ray diffraction imaging and visualization of the structure of these dislocations. A series of X-ray section topographs of both the indents and the dislocation loops were taken at the ANKA Synchrotron, Karlsruhe, Germany. The topographs were recorded on a CCD system combined with a high-resolution scintillator crystal and were measured by repeated cycles of exposure and sample translation along a direction perpendicular to the beam. The resulting images were then rendered into three dimensions utilizing open-source three-dimensional medical tomography algorithms that show the dislocation loops formed. Furthermore this technique allows for the production of a video (avi) file showing the rotation of the rendered topographs around any defined axis. The software also has the capability of splitting the image along a segmentation line and viewing the internal structure of the strain fields.


Author(s):  
P. Bayliss ◽  
N. C. Stephenson

SummaryThe crystal structure of gersdorffite (III) has been examined with three-dimensional Weissenberg X-ray diffraction data. The unit cell is isometric with a 5·6849 ± 0·0003 Å, space group PI, and four formula units per cell. This structure has the sulphur and arsenic atoms equally distributed over the non-metal atom sites of pyrite. All atoms show significant random displacements from the ideal pyrite positions to produce triclinic symmetry, which serves to distinguish this mineral from a disordered cubic gersdorffite (II) and a partially ordered cubic gersdorffite (I). Factors responsible for the atomic distortions are discussed.


1998 ◽  
Vol 333 (3) ◽  
pp. 811-816 ◽  
Author(s):  
Antonio PÁRRAGA ◽  
Isabel GARCÍA-SÁEZ ◽  
Sinead B. WALSH ◽  
Timothy J. MANTLE ◽  
Miquel COLL

The structure of mouse liver glutathione S-transferase P1-1 complexed with its substrate glutathione (GSH) has been determined by X-ray diffraction analysis. No conformational changes in the glutathione moiety or in the protein, other than small adjustments of some side chains, are observed when compared with glutathione adduct complexes. Our structure confirms that the role of Tyr-7 is to stabilize the thiolate by hydrogen bonding and to position it in the right orientation. A comparison of the enzyme–GSH structure reported here with previously described structures reveals rearrangements in a well-defined network of water molecules in the active site. One of these water molecules (W0), identified in the unliganded enzyme (carboxymethylated at Cys-47), is displaced by the binding of GSH, and a further water molecule (W4) is displaced following the binding of the electrophilic substrate and the formation of the glutathione conjugate. The possibility that one of these water molecules participates in the proton abstraction from the glutathione thiol is discussed.


2014 ◽  
Vol 70 (8) ◽  
pp. 1072-1075 ◽  
Author(s):  
Bo Jiang ◽  
Yanjie Liu ◽  
Rong Chen ◽  
Zhenbao Wang ◽  
Mansoor Tariq ◽  
...  

Amphioxus is regarded as an essential animal model for the study of immune evolution. Discovery of new molecules with the immunoglobulin superfamily (IgSF) variable (V) domain in amphioxus would help in studying the evolution of IgSF V molecules in the immune system. A protein was found which just contains only one IgSF V domain in amphioxus, termedAmphi-IgSF-V; it has over 30% sequence identity to the V domains of human immunoglobulins and mammalian T-cell receptors. In order to clarify the three-dimensional structure of this new molecule in amphioxus,Amphi-IgSF-V was expressed, purified and crystallized, and diffraction data were collected to a resolution of 1.95 Å. The crystal belonged to space groupP3221, with unit-cell parametersa=b= 53.9,c= 135.5 Å. The Matthews coefficient and solvent content were calculated to be 2.58 Å3 Da−1and 52.38%, respectively. The results will provide structural information to study the evolution of IgSF V molecules in the immune system.


2015 ◽  
Vol 68 (1) ◽  
pp. 121 ◽  
Author(s):  
Wenlong Liu ◽  
Xueying Wang ◽  
Mengqiang Wu ◽  
Bing Wang

Two new coordination polymers, namely, {[Cd3(bpt)2(bimb)2]·2(H2O)}n (1) and [Zn3(bpt)2(bimb)2]n (2) (bpt = biphenyl-3,4′,5-tricarboxylate, bimb = 1,4-bis(1-imidazol-yl)-2,5-dimethyl benzene), have been obtained under hydrothermal conditions. Their structures have been determined by single-crystal X-ray diffraction analysis and further characterised by elemental analysis and infrared spectroscopy. Complex 1 exhibits a trinodal (4,4,4)-connected topology with Schläfli symbol of (4.62.83)4.(64.82). Complex 2 is also a three-dimensional structure and displays a (3,4,6)-connected topology with Schläfli symbol of (4.62)2.(42.66.85.102).(64.82). It is shown that the asymmetrically tricarboxylate can bear diverse structures regulated by metal ions. The photoluminescence behaviours of compounds 1 and 2 were also discussed.


2007 ◽  
Vol 102 (4) ◽  
pp. 044304 ◽  
Author(s):  
S. K. Pradhan ◽  
Z. T. Deng ◽  
F. Tang ◽  
C. Wang ◽  
Y. Ren ◽  
...  

2010 ◽  
Vol 97-101 ◽  
pp. 1484-1488 ◽  
Author(s):  
Xian Feng Xu ◽  
Peng Xiao ◽  
Jia Sun

Carbon fibers had been modified by the method of electroless plating Ni. The surface morphology, ingredient and cross-section images of modification carbon fibers were charactered by scanning electron microscope and X-ray diffraction. A continuous dense Ni-P alloy layer could be coated on the surface of carbon fibers by such method. The nickel-plated layer expanded in a layer growth pattern. The reaction thermodynamic analysis indicated that the process was spontaneous. The controlling process of electroless plating Ni on the carbon fibers could be divided into 3 stages: at first, controlled by chemical reaction; hereafter, controlled by chemical reaction and ions diffusion; finally, controlled by ions diffusion.


2014 ◽  
Vol 70 (6) ◽  
pp. 584-587 ◽  
Author(s):  
Wei Zhang ◽  
Shu-Guang Qi ◽  
Yu-Quan Feng

The title compound, [Sr7(C7H3NO4)6(SO4)(H2O)6]n, has been synthesized by an ionothermal method using the ionic liquid 1-ethyl-3-methylimidazolium ([Emim]Br) as solvent, and characterized by elemental analysis, energy-dispersive X-ray spectroscopy, IR and single-crystal X-ray diffraction. The structure of the compound can be viewed as a three-dimensional coordination polymer composed of Sr2+cations, pyridine-2,6-dicarboxylate anions, sulfate anions and water molecules. The compound not only exhibits a three-dimensional structure with a unique coordination mode of the sulfate anion, but also features the first example of a heptanuclear strontium(II) coordination polymer. The structure is further stabilized by O—H...O hydrogen bonds and π–π stacking interactions.


1982 ◽  
Vol 26 ◽  
pp. 63-72 ◽  
Author(s):  
Nikos P. Pyrros ◽  
Camden R. Hubbard

The production of standard x-ray diffraction patterns at NBS imposes special requirements in the data processing of powder patterns. The patterns should be complete and have an overall accuracy of better than 0.01 degree two theta. To ensure completeness all the observable peaks should be indexed. To make certain that the sample is a pure phase, weak peaks have to be identified as well.The indexing of all the peaks implies that the cell constants must be known and there should be a good agreement between all the calculated and observed peak positions. In practice this is achieved by a least-squares refinement of the unit cell parameters. This serves as a test of the assumed unit cell and also as an interpretation of the observed peaks. Finally, an attempt is made to identify the space group. This step also requires the identification of weak peaks. The agreement of a known space group with the observed reflections further confirms the purity of the sample.


Sign in / Sign up

Export Citation Format

Share Document