Kinetics and mechanisms of the reaction of 2,4,6-trinitrocumene and 2,4,6-trinitroethylbenzene with 1,1,3,3-tetramethylguanidine in N,N-dimethylformamide solvent

1987 ◽  
Vol 65 (5) ◽  
pp. 1007-1011 ◽  
Author(s):  
Mihir K. Biswas ◽  
Arnold Jarczewski ◽  
Kenneth T. Leffek

The reaction of tetramethylguanidine (TMG) with trinitrocumene (TNC) and trinitroethylbenzene (TNEB) in dimethylformamide solvent has been studied with respect to products and kinetics. For TNC only σ-complex formation with the benzene ring was observed, for which the equilibrium constant, rate constants, and activation parameters were measured. For TNEB, both σ-complex formation and proton transfer from the σ-carbon atom of the ethyl group were observed. The equilibrium constants, rate constants, and activation parameters were separately determined for each reaction and a primary deuterium isotope effect, kH/kD = 13.6 (at 20 °C), was found for the proton transfer. The reaction parameters are compared to those for proton transfer from TNT to tetramethylguanidine in DMF solvent.

1988 ◽  
Vol 66 (6) ◽  
pp. 1454-1458 ◽  
Author(s):  
Kenneth T. Leffek ◽  
Przemyslaw Pruszynski

Equilibrium constants, rate constants, primary deuterium isotope effects, and activation parameters have been measured for the proton transfer reactions in acetonitrile solvent of 4-nitrophenylphenylcyanomethane and 2-methyl-4-nitrophenylphenyl-cyanomethane with tetramethylguanidine base and for the reactions of 2-methyl-4-nitrophenylphenylcyanomethane and 2,6-di-methyl-4-nitrophenylphenylcyanomethane with 1,5-diazabicyclo[5.4.0]undec-7-ene base. Introduction of the ortho-methyl groups in the substrate molecule caused significant reductions in the equilibrium and rate constants. The expected rise in the kinetic primary deuterium isotope effect was not observed when the first ortho-methyl group was introduced, but a 20% increase did accompany the introduction of the second ortho-methyl group. Enthalpy of activation measurements indicated that there was no increase in the proton tunnelling contribution to the isotope effect when the amount of steric hindrance is increased with ortho-methyl groups.


1973 ◽  
Vol 51 (17) ◽  
pp. 2805-2809 ◽  
Author(s):  
Jae-Hang Kim ◽  
Kenneth T. Leffek

The equilibrium constants, the second-order rate constants, and the activation parameters have been determined for the proton transfer from di-(4-nitrophenyl)methane to ethoxide ion in a series of mixed solvents containing various amounts of acetonitrile in ethanol. The quantities have been interpreted in terms of the general postulates of the Miller–Parker theory of solvation effects.


1986 ◽  
Vol 64 (6) ◽  
pp. 1021-1025 ◽  
Author(s):  
Arnold Jarczewski ◽  
Grzegorz Schroeder ◽  
Przemyslaw Pruszynski ◽  
Kenneth T. Leffek

Rate constants for the proton and deuteron transfer from 1-(4-nitrophenyl)-1-nitroethane to cesium n-propoxide in n-propanol have been measured under pseudo-first-order conditions with an excess of base for four temperatures between 5 and 35 °C. Using literature values of the fraction of cesium n-propoxide ion pairs that are dissociated into free ions, separate second-order rate constants for the proton and deuteron transfer to the ion pair and to the free ion have been calculated. The cesium n-propoxide ion pair is about 2.8 times more reactive than the free n-propoxide ion. The primary kinetic isotope effects for the two reactions are the same (kH/kD = 6.1–6.3 at 25 °C) within experimental error. The enthalpy of activation is smaller for the ion-pair reaction and the entropy of activation more negative than for the free-ion reaction. For proton transfer, ΔH±ion pair = 8.3 ± 0.2 kcal mol−1, ΔH±ion = 9.6 ± 1.0 kcal mol−1, ΔS±ion pair = −12.3 ± 0.6 cal mol−1 deg−1, ΔS±ion = −10.1 ± 3.4 cal mol−1 deg−1. The greater reactivity of the ion pair relative to the free ion is interpreted in terms of the weaker solvation shell of the ion pair in the initial state.


1983 ◽  
Vol 61 (1) ◽  
pp. 171-178 ◽  
Author(s):  
J. Peter Guthrie ◽  
Brian A. Dawson

In aqueous sodium hydroxide solutions at 25 °C, 3-methyl-2-butenal, 1c, undergoes retroaldol cleavage to acetone and acetaldehyde. The kinetics of the retroaldol reaction were followed spectrophotometrically at 242 nm and showed simple first order behavior. When 3-methyl-3-hydroxybutanal, 2c, was added to aqueous sodium hydroxide solutions at 25 °C, there was an initial increase in absorbance at 242 nm, attributed to formation of 1c, followed by a 20-fold slower decrease; the rate of the slow decrease matches the rate of disappearance of 1c under the same conditions. Analysis of the kinetics allows determination of the three rate constants needed to describe the system: khyd = 0.00342; kdehyd = 0.00832; kretro = 0.0564; all M−1 s−1. The equilibrium constant for enone hydration is 0.41. Rate constants for the analogous reactions for acrolein and crotonaldehyde could be obtained from the literature. There is a reasonable rate–equilibrium correlation for the retroaldol step. For the enone hydration step, rate and equilibrium constants respond differently to replacement of hydrogen by methyl. It is proposed that this results from release of strain after the rate-determining step by rotation about a single bond; this decrease in strain is reflected in the equilibrium constant but not in the rate constant.


1972 ◽  
Vol 50 (11) ◽  
pp. 1729-1733 ◽  
Author(s):  
E. A. Symons ◽  
E. Buncel

Sigma-complex formation between 1,3,5-trinitrobenzene (TNB) and hydroxide ion has been studied quantitatively as a function of medium composition for part of the dimethylformamide (DMF)–water solvent system by spectrophotometric methods. Only a 1:1 complex is detected under the conditions of measurement, with [TNB] ≥ [OH−]. The equilibrium constant (Keq) for complex formation in 22 mol % DMF has the value 3 × 10−3 l mol−1, compared with 3 l mol−1 in purely aqueous medium. Further increases in Kcq occur as the DMF content of the medium is raised; in 50 mol % DMF Keq ≈ 105, but reliable Keq values could not be obtained in this region of medium composition. The increase in Keq with increasing DMF content is interpreted largely on the basis of hydroxide ion desolvation.


2000 ◽  
Vol 14 (3) ◽  
pp. 99-107 ◽  
Author(s):  
Gamal A. Gohar ◽  
Moustafa M. Habeeb

The proton transfer equilibrium constants (KPT) for 1 : 1 complex formation between Chloranilic Acid (CA) and a series ofp- andm‒substituted anilines have been measured in 1,4-dioxane spectrophotometrically. The results supported the concept of amine-solvent hydrogen bond formation (short range solvation effect). Beside, this effect, theKPTvalues were apparently affected by the electron donation power of the aniline ring substituent, which was transmitted to the interaction center via resonance and inductive effects. Linear relationships betweenKPTand σ-Hammett substituent constants, or pKvalues formandpanilines,were obtained verifying the above conclusions. The solute-solvent hydrogen bond formation might increase the reactivity of the aniline nitrogen than would the inductive effect of the alkyl group, in case of CA-N-alkyl aniline complexes. The thermodynamic parameters for the proton transfer complex formation were estimated and it was indicated that the solvent–aniline hydrogen bond formation was preferred in the case ofp-substituted aniline complexes more than in the case of the correspondingm‒isomer. It has been found that the proton transfer process was enthalpy and entropy controlled.


1981 ◽  
Vol 59 (22) ◽  
pp. 3177-3187 ◽  
Author(s):  
Erwin Buncel ◽  
Allen W. Zabel

Kinetic data have been evaluated for hydrogen exchange in 1,3-dinitrobenzene (DNB), occurring at the 2-position, in dimethylformamide (DMF) – D2O mixtures containing deuteroxide ion. The pseudo first order rate constants for exchange, kobs, show inverse dependence on the initial DNB concentration, which can be quantitatively related to the extent of σ-complex formation in these systems. The profile for kobs as function of medium composition exhibits a maximum at ca. 70 mol% DMF, and εapp for σ-complex formation reaches a plateau at about the same medium composition. The equilibrium constants for σ-complex formation, Ke, are used to calculate the free, or uncomplexed, deuteroxide ion concentrations, which then allow one to calculate k2, the second order rate constants for exchange. The k2 values show a uniformly increasing tendency with increased DMF content. Correlations with medium basicity are examined, and the nature of the log k2 and log Ke vs. H− plots afford insight into the origin of the medium dependence of proton exchange. The results of the present study are consistent with the σ-complex being an unreactive form of the substrate towards exchange, which occurs via uncomplexed DNB present in small concentration. The study also rules out the possibility that the colored species present in these systems is the carbanion formed on deprotonation of DNB.


1972 ◽  
Vol 50 (1) ◽  
pp. 24-30 ◽  
Author(s):  
A. Jarczewski ◽  
K. T. Leffek

The second-order rate constants have been measured over a range of temperatures for the proton-transter reactions from di-(4-nitrophenyl)methane to ethoxide, isopropoxide, and t-butoxide ions in solvents consisting of the corresponding alcohols containing 10% toluene by volume. The activation parameters ΔH≠ and ΔS≠ have been calculated and an interpretation of them is given in terms of solvation effects during the activation process. A comparison between the activation parameters for proton transfers and E2 olefin-forming β-elimination reactions is made and discussed with respect to transition state character of the latter reactions.


1979 ◽  
Vol 57 (20) ◽  
pp. 2707-2713 ◽  
Author(s):  
J. Korppi-Tommola ◽  
H. F. Shurvell

Complex formation between pentachlorophenol-OD (PCP-OD) and acetone and acetone-d6 in CCl4 solution has been studied. Digitized infrared spectra in the O—D stretching region ν(OD) of PCP-OD and the C—O stretching region ν(CO) of acetone have been recorded from solutions of various concentrations. The present results are compared with previous work on complex formation between PCP and the same acceptor molecules. In the ν(OD) region, factor analysis (principal component analysis) and a concentration study of the areas of the resolved band components suggest that two (1:1) complexes occur in solution. The equilibrium constant obtained for one of the complexes shows an isotope effect due to deuteration of the proton donor. In the ν(CO) region, only one band due to complexed species was resolved. Equilibrium constants calculated using the results from the ν(OD) and ν(CO) regions are in good agreement with each other.


1979 ◽  
Vol 57 (12) ◽  
pp. 1531-1540 ◽  
Author(s):  
R. A. McClelland ◽  
M. Ahmad ◽  
J. Bohonek ◽  
S. Gedge

Kinetic investigations of the hydrolysis of the 2-phenyl-4,4,5,5-tetramethyl-1,3-dioxolenium ion and 2-phenyl-2-methoxy-4,4,5,5-tetramethyl-1,3-dioxolane furnish rate constants for all three reaction stages of the ortho ester hydrolysis: (1) generation of the dioxolenium ion, (2) hydration of this ion to form hydrogen ortho ester, and (3) breakdown of this species to pinacol monobenzoate. The equilibrium constant for stage (2) can also be obtained. This study complements a previous investigation of 2-phenyl-2-alkoxy-1,3-dioxolanes where similar information was obtained.The rate constants for carbonyl oxygen exchange of the ester products of these reactions, pinacol monobenzoate and ethylene glycol monobenzoate, have been measured. This reaction is shown to proceed by a different mechanism to that normally associated with exchange of carboxylic acid derivatives: cyclization of the glycol monoester to form hydrogen ortho ester, followed by loss of the labelled exocyclic OH group to give 1,3-dioxolenium ion. Reversal of these steps, initiated by an unlabelled water molecule, results in exchange. The relationship of this mechanism with that of the ortho ester hydrolysis is obvious; it is shown that the exchange provides rate constants for the reverse of stage (3). This means that both the forward and reverse rates of this process have been obtained, and this provides the equilibrium constant.


Sign in / Sign up

Export Citation Format

Share Document